Kh¸i niÖm 1 §Þnh nghÜa hÖ thèng xö lý n­íc th¶i chi phÝ thÊp


Các yếu tố ảnh hưởng đến quá trình phân hủy kỵ khí



tải về 394.2 Kb.
trang6/6
Chuyển đổi dữ liệu11.07.2016
Kích394.2 Kb.
#1656
1   2   3   4   5   6

Các yếu tố ảnh hưởng đến quá trình phân hủy kỵ khí


Các yếu tố môi trường ảnh hưởng đến quá trình phân hủy kỵ khí nước thải gồm nhiệt độ, pH, các thành phần dinh dưỡng chính và các hợp chất độc hại trong nước đầu vào. Đối với nước thải sinh hoạt, thông thường ba yếu tố cuối không cần phải cân nhắc. Điều kiện pH thích hợp và ổn định trong nước thải sinh hoạt thường được tạo nên nhờ sự có mặt của các hợp chất axit cacbonic và không cần sử dụng hóa chất nào để hiệu chỉnh pH. Các chất dinh dưỡng (cả các chất dinh dưỡng vĩ mô, nitơ và phốt pho và dinh dưỡng vi mô) có rất nhiều trong nước thải. Các hợp chất có tính độc rõ rệt đối với các vi khuẩn nhìn chung không có trong nước thải sinh hoạt. Ảnh hưởng độc hại của sunfua không nghiêm trọng và ảnh hưởng của ôxy hòa tan chỉ có thể xuất hiện khi hệ thống xử lý kỵ khí có thiết kế không hợp lý.

Ảnh hưởng của nhiệt độ tới quá trình phân hủy kỵ khí

Đối với các loại nước thải có nồng độ chất ô nhiễm cao, nhiệt độ vận hành đối với một quy mô công suất nào đó có thể được xem như một quá trình có thể điều chỉnh hệ thống xử lý kỵ khí, vì trong giới hạn cho phép, nó có thể được kiểm soát bằng việc sử dụng mêtan sinh ra để làm ấm nước thải. Hình thức này không áp dụng được cho trường hợp các loại nước thải nồng độ thấp như nước thải sinh hoạt vì năng lượng thu được từ mêtan sinh ra không đủ để làm tăng nhiệt độ của hệ thống. Nhiệt lượng lớn nhất được sinh ra từ sự đốt cháy mêtan thu được từ quá trình phân hủy 500 mg/L COD (giá trị điển hình cho nước thải thô) là 1,5 kcal/L. Về lý thuyết việc làm tăng nhiệt độ lên 1,5oC là có thể thực hiện được, nhưng giá trị tối đa này chỉ có thể đạt được khi các chất ô nhiễm được chuyển hóa hoàn toàn thành mêtan-COD và nhiệt lượng chứa trong mêtan được khai thác toàn bộ. Vì thế, nước thải sinh hoạt cần phải được xử lý tại nhiệt độ nó đạt được khi vào hệ thống, nhiệt độ này luôn thấp hơn nhiệt độ tối ưu cho quá trình phân hủy kỵ khí.

Cũng như các quá trình sinh học khác, hiệu suất phân hủy kỵ khí phụ thuộc nhiều vào nhiệt độ. Tốc độ chuyển hóa của các quá trình phân hủy kỵ khí diễn ra nhanh nhất với các điều kiện “mesophilic” trong khoảng từ 35 đến 40oC và “thermophilic” khoảng 55oC.

Ảnh hưởng của nhiệt độ tới quá trình phân hủy kỵ khí không bị hạn chế khi thay đổi tốc độ của quá trình. Với tất cả các quy mô công suất, khả năng áp dụng quá trình phân hủy kỵ khí tại các khu vực có điều kiện khí hậu nhiệt đới (nhiệt độ nước thải trên 20oC) và cận nhiệt đới (nhiệt độ nước thải trên 15oC) thường khả thi hơn so với các vùng khí hậu ôn đới và lạnh (nhiệt độ trên 10oC).



Ảnh hưởng của pH

Giá trị và độ ổn định của pH trong bể phản ứng kỵ khí là yếu tố quan trọng vì quá trình mêtan hóa chỉ đạt hiệu suất cao trong điều kiện pH được duy trì ở mức trung tính. Khi giá trị pH thấp hơn 6,3 hoặc cao hơn 7,8, hiệu suất của quá trình mêtan hóa giảm. Các vi khuẩn lên men axit ít nhạy cảm với các giá trị pH cao hay thấp, vì vậy quá trình lên men axit sẽ chiếm ưu thế hơn mêtan hóa, điều đó có thể gây nên hiện tượng làm “chua” các thành phần trong bể phản ứng.

Giá trị pH trong bể phản ứng được thiết lập sau khi đạt được mức cân bằng ion trong các thành phần gốc axit khác nhau có mặt trong hệ thống. Các thành phần gốc axit yếu có ảnh hưởng lớn và đặc biệt là các hợp chất của axit cacbonic thường là yếu tố quyết định, vì nồng độ của chúng nhìn chung thường vượt quá mức cơ bản so với các hợp chất khác như phôtphat, amonia, hoặc sunphat.

Ảnh hưởng của các chất độc hại

Ngoài nồng độ ion hydrô, một số các thành phần khác cũng ảnh hưởng đến hiệu suất phân hủy kỵ khí, thậm chí với nồng độ rất thấp, như các kim loại nặng và các hợp chất hữu cơ – axit. Tuy nhiên, sự có mặt của các hợp chất này với nồng độ gây hại thường hiếm xảy ra trong nước thải. Các hợp chất có thể gây ảnh hưởng xấu thường là ôxy và sunphít. Khả năng xâm nhập của ôxy có thể xảy ra thông qua hệ thống phân phối nước thải, nhưng sẽ được tiêu thụ cho sự chuyển hóa ôxy hóa trong quá trình lên men axit. Vì vậy thường không có ôxy hòa tan trong bể phản ứng kỵ khí, mặc dù không khí có thể xâm nhập vào cùng nước thải đầu vào, vì vậy sự xâm nhập của nó sẽ không gây ảnh hưởng đối với hoạt động của bể phản ứng. Sunphít có thể được tạo thành trong quá trình từ phản ứng khử sunphát. Tuy nhiên, theo công bố của Rinzema (1989) nồng độ sunphít có trong hệ thống xử lý kỵ khí nước thải đô thị (tới 50mg/l) thấp hơn nhiều so với giá trị nồng độ tối thiểu có thể gây tác hại đối với hệ thống. Vì vậy, tác hại của các độc tố thường không phải là vấn đề cần lưu tâm đối với các hệ thống xử lý nước thải sinh hoạt.


Ưu điểm của quá trình kỵ khí

Các quá trình kỵ khí yêu cầu ít năng lượng, phát sinh ít bùn dư, yêu cầu chất dinh dưỡng ít, và có thể chịu được tải lượng thể tích lớn:



  • Phát sinh năng lượng mới; quá trình xử lý kỵ khí làm phát sinh năng lượng mới tương đương 10.4×106 kJ/ngđ, trong khi các quá trình hiếu khí lại yêu cầu sử dụng năng lượng - 1.9×106 kJ/ngđ (xem bảng 4.16).

  • Sản lượng sinh khối thấp hơn; quá trình kỵ khí làm giảm lượng sinh khối dư với hệ số 6 đến 8, và điều này sẽ làm giảm chi phí cho công đoạn xử lý bùn cặn.

  • Nhu cầu các chất dinh dưỡng thấp hơn; Đối với các quá trình xử lý hiếu khí bằng bùn hoạt tính, tỷ lệ thích hợp giữa BOD và các chất dinh dưỡng có trong nước thải là BOD: N: P = 100: 5: 1. Tuy nhiên, trong quá trình xử lý kỵ khí, nhu cầu sử dụng các chất dinh dưỡng ít hơn theo tỷ lệ BOD: N: P = 350÷500: 5: 1. Nước thải có đủ nitơ và phốtpho và các thành phần vi lượng khác nhau để đáp ứng nhu cầu về dinh dưỡng trong xử lý kỵ khí. Ngược lại, đối với các quá trình xử lý hiếu khí thường cần bổ sung thêm các chất dinh dưỡng.

  • Tải lượng thể tích cao hơn; quá trình kỵ khí thường đạt được tải lượng hữu cơ cao hơn so với quá trình hiếu khí (tải lượng hữu cơ là 3,2÷32 kg COD/m3.ngđ đối với quá trình kỵ khí cao hơn nhiều so với mức 0,5÷3,2 COD/m3.ngđ đối với quá trình hiếu khí) [Speece, 1996]. Lượng chất hữu cơ được loại bỏ nhiều hơn trên đơn vị thể tích công trình.

Nhược điểm của quá trình kỵ khí

Trái lại, xử lý kỵ khí đòi hòi thời gian khởi động lâu hơn, bổ sung thêm các chất kiềm, xử lý nước thải và vi khuẩn kỵ khí thường rất nhạy cảm với các chất độc.



  • Thời gian khởi động lâu hơn; tốc độ phát triển của các vi khuẩn kỵ khí thường chậm hơn vì vậy đòi hỏi thời gian khởi động hệ thống lâu hơn, thường từ 8 đến 12 tuần.

  • Yêu cầu bổ sung kiềm; cần đảm bảo nồng độ kiềm ở mức từ 2.000 đến 3.000 mg/L (theo CaCO3) để trung hòa lượng khí CO2 và các axit hữu cơ dễ bay hơi phát sinh từ quá trình phân hủy kỵ khí các chất hữu cơ và duy trì độ pH thích hợp với sự phát triển của các vi khuẩn. Nếu lượng kiềm này không có sẵn trong nước thải hoặc không được tạo ra bởi quá trình phân hủy các chất đạm hay axit aminô, nhu cầu bổ sung thêm các chất kiềm sẽ làm tăng chi phí hóa chất đáng kể.

Yêu cầu xử lý bổ sung; khả năng chịu tải lượng hữu cơ cao hơn, lượng chất hữu cơ được xử lý nhiều hơn, và thông thường nồng độ hữu cơ trong nước thải đầu vào cao hơn nên nước thải sau quá trình xử lý kỵ khí thường còn dư nhiều chất hữu cơ hơn so với nước sau xử ký hiếu khí và cần được xử lý bổ sung nhằm đáp ứng yêu cầu chất lượng xả. Một chuỗi các bể phản ứng kết hợp các quá trình kỵ khí và hiếu khí có thể được ứng dụng trong xử lý nước thải đô thị ở những vùng có khí hậu ấm, nhằm làm giảm bớt nhu cầu sử dụng năng lượng và giảm lượng bùn thải phát sinh [Goncalves and Avaujo, 1999; Garuti et al., 1992].

Các quá trình xử lý kỵ khí nước thải

Hệ thống xử lý kỵ khí cổ điển

Những ứng dụng đầu tiên

Ứng dụng đầu tiên của quá trình phân hủy kỵ khí để xử lý nước thải được tiến hành trong bể kín khí được Mouras triển khai tại Pháp vào cuối thể kỷ trước. Vào khoảng đầu thế kỷ XX, một số hệ thống xử lý kỵ khí mới đã được triển khai ví dụ như bể tự hoại của Cameron ở Anh, bể lắng hai vỏ của Imhoff ở Đức. Trong cả hai hệ thống này, nước thải chảy qua phần trên của hệ thống, bùn cặn lắng xuống tạo ra vùng kỵ khí ở đáy bể. Các thành phần chất rắn lắng được có trong nước thải sẽ lắng xuống vùng đáy và được phân hủy trong điều kiện kỵ khí. Trong bể tự hoại, hiệu suất lưu giữ các chất rắn lắng được có thể bị ảnh hưởng bởi các chất trôi nổi dâng lên từ đáy, hoặc do sự kết dính các chất rắn bởi các bọt khí sinh học tạo thành hỗn hợp váng. Điều này không xảy ra trong bể lắng hai vỏ do các chất rắn được lắng xuống khoang phân hủy riêng và bọt khí phát sinh dâng lên từ đáy không vào được khoang lắng. Trong thời gian sau, xuất hiện các bể lắng hai vỏ cải tiến. Tại các bể này, các chất rắn tích tụ trong khoang phân hủy được gia nhiệt, vì vậy làm tăng tốc độ phân hủy kỵ khí. Thời gian lưu nước trong bể tự hoại và bể lắng hai vỏ là một đến hai ngày, đủ để loại bỏ các chất rắn lắng được. Do vậy, các hệ thống này trên thực tế là các hệ thống xử lý sơ cấp kết hợp xử lý sinh học các chất rắn lắng được.

Trong các hệ thống xử lý kỵ khí thời đầu, việc xử lý được tiến hành trên cơ sở quá trình lắng các chất hữu cơ lơ lửng. Do chỉ một phần các chất hữu cơ chảy vào là có thể lắng được (một phần ba tới một nửa), nên hiệu suất xử lý tối đa của các hệ thống này chỉ đạt 3050% tính theo chất hữu cơ dễ phân hủy sinh học và phụ thuộc nhiều vào tính chất của nước thải và khả năng lắng cặn.

Hiệu quả xử lý thấp của các hệ thống sơ cấp có thể được cho là do thiết kế chưa hợp lý. Do khả năng tiếp xúc kém giữa các VSV kỵ khí trong hệ thống và các thành phần chất hữu cơ không lắng được trong nước thải đầu vào, phần lớn chất hữu cơ hoà tan hoặc đã được thủy phân không được chuyển hoá bị cuốn trôi theo dòng thải ra khỏi hệ thống. Tại thời điểm đó, các khái niệm và ý nghĩa của việc tạo khả năng tiếp xúc tốt giữa chất hữu cơ và quần thể vi khuẩn chưa được nhận thức đầy đủ. Khả năng hoạt động kém của hệ thống kỵ khí đã làm xuất hiện các thành kiến cho rằng khả năng xử lý của các hệ thống này kém hơn so với các hệ thống hiếu khí, các thành kiến này vẫn còn tồn tại đến ngày nay. Tuy nhiên, trong cùng khoảng thời gian đó, từ các kết quả nghiên cứu được triển khai trong thực tế đã cho thấy rằng hệ thống xử lý kỵ khí hiện đại được thiết kế hợp lý có thể đạt hiệu suất xử lý cao đối với các chất hữu có thể phân hủy sinh học, thậm chí với thời gian lưu nước rất ngắn.



Hồ sinh học kỵ khí

Hồ sinh học kỵ khí về cơ bản không khác biệt với các hệ thống xử lý kỵ khí thời đầu được mô tả trong phần trên. Chúng cũng là các hệ thống lưu chuyển với cặn lắng kỵ khí được tích tụ ở phần đáy. Các hồ kỵ khí có khối tích lớn hơn các hệ thống xử lý bước đầu rất nhiều, và thường không được che đậy. Việc khuấy trộn nước trong hệ thống (độ sâu 2÷5 m) có thể xảy ra nhờ chuyển động dâng lên của các bọt khí sinh học, và cũng do tác động của gió và ánh nắng mặt trời (khuấy trộn cơ học và khuấy trộn nhiệt). Hồ kỵ khí thường chỉ dùng riêng cho xử lý nước thải, đặc biệt là được sử dụng như bước tiền xử lý trong một chuỗi các hồ làm ổn định nước thải. Thời gian lưu nước thải trong các hồ kỵ khí (thông thường từ hai đến năm ngày) thường lâu hơn trong các hệ thống xử lý bước đầu và do đó hiệu suất xử lý chất hữu cơ cũng cao hơn. Với thời gian lưu nước từ một đến năm ngày, hồ kỵ khí có thể xử lý BOD trong nước thải sinh hoạt đạt hiệu suất 50÷70% [Mara, 1976].

Trên hình 2.12 biểu thị kết quả một số nghiên cứu về quan hệ hàm số giữa hiệu suất xử lý BOD và thời gian lưu nước.

Từ các kết quả thí nghiệm có thể xây dựng công thức thực nghiệm xác định quan hệ giữa hiệu suất xử lý và thời gian lưu (hydraulic retention time - HRT). Quan hệ tuyến tính của đồ thị logarit trên hình 2.12 sẽ là:



Trong đó: E - Hiệu suất xử lý chất hữu cơ (%).



Để đạt hiệu suất xử lý BOD trên 80%, cần thời gian lưu nước lâu xấp xỉ sáu ngày. Với tải lượng hữu cơ dưới 1.000 kg BOD/ha.ngày hay 0,1 kg BOD/m2.ngày, chức năng xử lý của hồ sẽ có xu hướng tùy tiện (tức là có điều kiện hiếu khí tại lớp nước bề mặt) hơn là kỵ khí. Với các giá trị điển hình về độ sâu (2÷3 m) và BOD đầu vào (250 mg/L hay 0,25 kg/m3), hồ có thể đạt được mức tải 0,1 kg-BOD/m2.ngày với thời gian lưu bằng 0,25×(2÷3) / 0,1= = (5 ÷7) ngày. Vì vậy, cần có thời gian lưu hơn sáu ngày nhằm đảm bảo điều kiện kỵ khí trong hồ.

Các hệ thống xử lý kỵ khí tốc độ cao

Trên hình 2.13 mô tả sơ đồ nguyên lý hoạt động của các hệ thống xử lý kỵ khí hiện đại. Về cơ bản, có hai cơ chế lưu bùn được sử dụng:

(1) Cố định bùn: sử dụng vật liệu lưu giữ bùn. Loại này bao gồm bể lọc kỵ khí dòng chảy xuôi hoặc dòng chảy ngược (hình 2.13a và 2.13b) và các bể phản ứng có tầng bùn đáy hoạt động theo cơ chế dòng tuần hoàn (hình 2.13c) hoặc cơ chế tạo lớp bùn lơ lửng (hình 2.13d).

(2) Tách lỏng - rắn và tuần hoàn chất rắn đã được tách. Loại này bao gồm quá trình tiếp xúc, quá trình kỵ khí giống như quá trình bùn hoạt tính (hình 2.13e) có dùng thêm bể lắng riêng biệt và bể UASB (hình 2.13g).

Các loại hệ thống xử lý kỵ khí khác nhau đã được áp dụng rộng rãi để xử lý nước thải của nhiều loại hình công nghiệp, nhưng cho đến nay quá trình xử lý kỵ khí hiếm khi được sử dụng trong xử lý nước thải sinh hoạt, vì vậy các thông tin thực nghiệm còn rất hạn chế. Trên thực tế, kinh nghiệm vận hành các hệ thống xử lý kỵ khí tốc độ cao mới chỉ hạn chế ở việc sử dụng các công trình: bể lọc kỵ khí, bể kỵ khí với lớp bùn chuyển động và giãn nở, bể UASB có hoặc không có thiết bị tách pha lỏng - rắn. Do vậy, trong phần này chỉ tập trung thảo luận về những quá trình này.

Bể lọc kỵ khí

Bể lọc kỵ khí (LKK) chủ yếu được sử dụng để xử lý nước thải công nghiệp, mặc dù còn ở mức độ tương đối hạn chế. Bể LKK có thể hoạt động tốt với tải lượng hữu cơ 10  20 kg COD/m3.ngđ khi có nồng độ và tính chất của các thành phần hữu cơ trong nước thải không có tính độc hại. Nhược điểm lớn của hệ thống LKK là giá thành của các loại vật liệu lọc cao, thậm trí có thể ngang bằng với giá thành xây dựng công trình. Các hệ thống LKK thường được dùng để xử lý nước thải từ các loại ngành công nghiệp khác nhau, nhưng đối với nước thải sinh hoạt, hệ thống này còn ít được áp dụng với quy mô công suất lớn.

Các số liệu biểu thị khả năng hoạt động của một số hệ thống LKK (dòng chảy ngược có vật liệu lọc dạng rời và dạng cố định theo mô-đun) vận hành trong điều kiện phòng thí nghiệm và trong thực tế được tổng kết bằng biểu đồ lôgarit thể hiện mối quan hệ giữa hiệu suất xử lý COD và thời gian lưu nước (hình 4.46a). Quan hệ giữa các thông số này có thể được biểu thị bằng phương trình:

hay (*)

Trong đó:

S - nồng độ chất nền (mg COD/L), vr tương ứng với trước và sau xử lý;

E - hiệu suất xử lý chất nền (%);

c1, c2 - hằng số thực nghiệm;

HRT - thời gian lưu nước (ngày).

Từ biểu đồ nêu trên hình 2.14a, ta thấy: c1= 0,5 và c2 = 0,87, do đó công thức (*) được viết thành:



E = 1 – 0,87 (HRT)-0,5

Các hệ thống có lớp bùn đáy chuyển động và giãn nở

Trong hệ thống có lớp bùn đáy chuyển động (hình 2.13c), vật liệu lưu giữ bùn có dạng hạt được giữ ở trạng thái luôn chuyển động do lực cản ma sát của dòng chảy ngược gây nên. Vật liệu lưu giữ bùn sử dụng trong hệ thống BCĐ cần có tỷ trọng thấp như chất dẻo hoặc antraxít nhằm giảm vận tốc cần thiết của dòng chất lỏng chảy ngược, do đó giảm chi phí vận hành máy bơm. Quá trình BCĐ đòi hỏi đường kính của hạt vật liệu nhỏ hơn 3 mm và vận tốc dòng chảy ngược khoảng 20 m/h. Nước thải sau xử lý được tuần hoàn để đảm bảo duy trì độ ổn định của vận tốc dòng chảy ngược. Độ sâu của bể dao động từ 4 đến 6 m. Với diện tích tiếp xúc bề mặt lớn của các hạt vật liệu trong tầng bùn chuyển động sẽ đảm bảo khả năng lưu giữ được lượng sinh khối lớn trong hệ thống. Quá trình BCĐ rất khả thi trong XLNT hữu cơ với các mức nồng độ đa dạng; ở nhiệt độ dưới 35°C, tải lượng hữu cơ 10÷40 kg COD/m3.ngđ, hệ thống BCĐ có thể đạt hiệu suất xử lý COD trên 90%. Bể BCĐ có thể duy trì được nồng độ sinh khối cao, chịu được tải lượng hữu cơ lớn. Do được vận hành theo chế độ tuần hoàn nước sau xử lý nên bể BCĐ có khả năng tự điều chỉnh (pha loãng nồng độ hữu cơ đầu vào bằng dòng tuần hoàn), tránh được các hiện tượng gây sốc đột ngột có thể xảy ra do các dao động lớn về nồng độ chất hữu cơ trong nước thải đầu vào. Các bể này cũng không đòi hỏi nhiều diện tích xây dựng. Quá trình BCĐ phù hợp nhất với nước thải chứa các thành phần ô nhiễm ở dạng hoà tan vì hệ thống không có khả năng giữ lại các chất rắn. Các cửa vào và ra của bể cần được thiết kế đảm bảo sự phân bố dòng chảy tốt. Nhược điểm của hệ thống BCĐ bao gồm nhu cầu điện năng vận hành bơm nhằm duy trì trạng thái chuyển động của vật liệu và bùn trong hệ thống, chi phí vật liệu lưu giữ bùn cao, cần kiểm soát và duy trì sự ổn định của chiều cao tầng bùn chuyển động trong hệ thống, kiểm soát xả bùn dư, thời gian khởi động lâu.





Quá trình xử lý kỵ khí với tầng bùn đáy giãn nở (BGN) (hình 2.13d) khác với khái niệm BCĐ bởi vận tốc dòng chảy ngược được áp dụng thấp hơn nhiều. Để giữ cho lớp vật liệu đệm có thể giãn nở, một phần nước sau xử lý được tuần hoàn bằng bơm nhằm tăng vận tốc dòng chảy ngược. Tỷ lệ giãn nở tầng bùn đáy nên dao động trong khoảng 10%÷20%, chiều cao sau giãn nở khoảng 50% chiều cao hiệu dụng của bể, và vận tốc dòng chảy ngược khoảng 2 m/h. Những điều kiện này sẽ tạo sự va chạm giữa các phần tử hạt và làm bong lớp màng sinh học bám trên bề mặt hạt nhanh hơn. Vật liệu đệm thường sử dụng là cát thạch anh có đường kính 0,2÷0,5 mm. Than hoạt tính dạng hạt, gốm, zeolit cũng có thể là vật liệu phù hợp.

Trên hình 2.14b thể hiện các kết quả quan trắc hiệu suất xử lý và thời gian lưu nước trong quá trình vận hành một số hệ thống BCĐ và BGN. Mối quan hệ giữa các thông số này có thể được thể hiện theo công thức sau:

E = 1 – 0,56 (HRT) -0,6

Bể xử lý sinh học dòng chảy ngược qua tầng bùn kỵ khí

Bể xử lý sinh học dòng chảy ngược qua tầng bùn kỵ khí (UASB) (xem hình 2.13f) được Lettinga và các đồng nghiệp triển khai vào những năm 1970 tại Đại học Wageningen, Hà Lan. Bể UASB là hệ thống kỵ khí tốc độ cao được sử dụng rộng rãi nhất trong xử lý chất thải kỵ khí. Sơ đồ cấu tạo bể USAB được mô tả trên hình 2.15. Thiết bị đặc thù nhất của bể USAB là bộ phận tách pha rắn-lỏng-khí. Thiết bị này được bố trí ở phần trên của bể và chia bể thành hai phần: phần dưới là vùng phân hủy, và phần trên là vùng lắng. Nước thải được phân phối đều vào tại vùng đáy, chảy ngược qua lớp bùn và vào vùng lắng thông qua các kẽ hở giữa các bộ tách pha.

Do bộ tách pha có cấu tạo thành nghiêng dốc, diện tích phần nước trong vùng lắng tăng dần theo chiều dâng của dòng chảy, nên vận tốc dòng chảy ngược giảm dần khi chất lỏng chảy về phía điểm xả. Do vận tốc chất lỏng giảm dần, phần bùn bị cuốn theo dòng chảy vào vùng lắng có thể kết tụ và lắng xuống. Tới một thời điểm nào đó, khi trọng lượng của lớp bùn kết tụ trên bộ tách pha sẽ vượt quá lực ma sát có thể giữ nó trên bề mặt nghiêng dốc, bùn sẽ trượt xuống khoang phân hủy phía dưới và lại tham gia vào sinh khối bùn có vai trò phân hủy chất hữu cơ trong nước thải đầu vào. Như vậy, vùng lắng ở phía trên giúp cho hệ thống có thể giữ được khối lượng bùn lớn trong bể USAB đồng thời hạn chế được tối thiểu nồng độ chất chất lơ lửng trong nước sau xử lý.

Các bọt khí sinh học phát sinh từ quá trình phân hủy kỵ khí các chất hữu cơ trong lớp bùn đáy nổi lên theo chiều dòng chảy tới bề mặt phân giới các pha lỏng - khí bên trong thiết bị tách pha. Cao trình bề mặt phân giới này có thể ngang bằng với cao trình mặt phân giới nước - khí trong vùng lắng, hoặc có thể ở mức thấp hơn nếu sử dụng van thủy lực để tăng áp suất của khí sinh học (xem hình 2.15). Các bông bùn dính trên hoặc bị cuốn theo bọt khí có thể nổi lên mặt phân giới phía trong thiết bị tách khí, nhưng sau đó sẽ lắng xuống khi các bọt khí thoát vào pha khí từ mặt phân giới. Các vách ngăn được bố trí bên dưới các khe hở giữa các thiết bị gom khí có tác dụng hướng dòng, ngăn không cho bọt khí lọt vào vùng lắng phía trên nhằm hạn chế khả năng tạo dòng chảy rối làm cản trở quá trình lắng của các hạt bùn.


Hình 2.15. Sơ đồ cấu tạo bể xử lý sinh học dòng chảy ngược qua lớp bùn kỵ khí (UASB)

Một đặc tính quan trọng của quá trình UASB là khả năng tạo bùn dạng hạt (đường kính 1÷5 mm) trong hệ thống. Các hạt bùn hình thành trong bể UASB có độ bền cơ học và tỷ trọng cao, khả năng lắng tốt và độ hoạt tính tạo mêtan cao. Bùn dạng hạt được hình thành chủ yếu trong quá trình xử lý các loại nước thải chứa các chất hoà tan. Khả năng tạo bùn hạt liên quan đến các điều kiện vận hành bể USAB và đặc tính của nước thải cần xử lý. Cho tới nay, chưa thấy có hiện tượng tạo hạt nào trong các loại bể UASB xử lý nước thải thô. Trong tất cả các trường hợp, chỉ có các bông bùn được hình thành trong các bể UASB xử lý nước thải thô. Tuy nhiên, hiệu suất xử lý BOD và TSS đạt được vẫn ở mức cao, điều này chứng tỏ việc tạo bùn hạt không phải là điều kiện nhất thiết cho việc xử lý thành công nước thải trong bể USAB.

Để giảm chi phí xây dựng, bể xử lý kỵ khí dòng chảy ngược (hình 2.13g), một dạng UASB đã đơn giản hoá cũng thường được áp dụng. Hệ thống này không có thiết bị tách pha, nhưng có bố trí khoang lắng nhỏ gắn liền bên trong. Bộ tách pha là thiết bị thiết yếu của bể UASB, do vậy hệ thống này sẽ được xem xét riêng; tương tự như hồ kỵ khí dòng chảy ngược.

Trên hình 2.14c và 2.14d mô phỏng kết quả vận hành các mô hình bể kỵ khí dòng chảy ngược và bể UASB. Từ các biểu đồ này có thể xây dựng được các công thức kinh nghiệm sau:

 Đối với bể kỵ khí dòng chảy ngược: E = 1 – 1.53 (HRT)-0.64

 Đối với bể UASB: E = 1 – 0.68 (HRT)-0.68



Bể xử lý kỵ khí với tầng bùn hạt giãn nở

Bể xử lý kỵ khí với tầng bùn hạt giãn nở (BHGN) (hình 2.13h) do Van der Last (1991) phát triển, có đặc điểm là lớp bùn dạng hạt hoạt động theo phương thức giãn nở nhờ tốc độ dòng chảy ngược cao hơn, tức là từ 6÷12 m/giờ (vận tốc này chỉ ở mức 1÷2 m/giờ trong bể USAB). Bể BHGN có hiệu suất xử lý chất hữu cơ hoà tan tương đối cao thậm chí trong điều kiện nhiệt độ thấp, do tạo được điều kiện tiếp xúc tốt giữa chất hữu cơ và các hạt bùn. Hệ thống BHGN đặc biệt hữu ích trong điều kiện nhiệt độ thấp, nước có nồng độ hữu cơ thấp, khả năng sinh khí, và, do đó, mức độ xáo trộn trộn do bọt khí tạo ra thấp. Trong các điều kiện này, mức động năng cao hơn của dòng chảy vào và chiều cao tăng hơn của lớp bùn hạt đã giãn nở sẽ giúp hệ thống hoạt động tốt hơn so với bể UASB thông thường.

Bể phản ứng BHGN không xử lý được các chất hữu cơ không hòa tan do vận tốc dòng chảy ngược cao. Chất rắn lơ lửng chảy vào được đẩy qua tầng bùn hạt và theo dòng thải rời khỏi hệ thống. Mặt khác, các chất dạng keo có thể được xử lý một phần do được hấp thụ vào các bông bùn.



Hình 2.16. Quan hệ giữa hiệu suất xử lý chất hữu cơ và thời gian lưu nước.

So sánh hoạt động của phương pháp xử lý nước thải kỵ khí

Quan hệ tuyến tính giữa lôgarít của hiệu suất xử lý và thời gian lưu trong tất cả các hệ thống xử lý kỵ khí có thể được biểu thị bằng phương trình sau:



.

Trong đó hằng số c1 c2 thể hiện đặc tính của các quá trình xử lý kỵ khí khác nhau có giá trị được liệt kê trong bảng 4.18. Có thể thấy rằng trong bất kỳ hệ thống nào, hiệu suất thực cũng chênh lệch đáng kể so với giá trị dự đoán. Mặc dù vậy, số liệu cho thấy:

 Đối với nhiệt độ trên 20oC, hiệu suất xử lý của các quá trình đã xem xét có thể đạt trên 80%, nhưng thời gian lưu cần thiết dao động đáng kể tuỳ theo loại hệ thống;

 Khả năng xử lý của các loại bể UASB và bể BCĐ hoặc BGN có xu hướng giống nhau khi có thời gian lưu giống nhau;

 Khả năng xử lý của hệ thống UASB (với thiết kế chuẩn) thường cao hơn so với bể xử lý kỵ khí dòng chảy ngược không có thiết bị tách pha, và bể lọc kỵ khí khi hoạt động với cùng một thời gian lưu nước như nhau.

Để so sánh thời gian lưu nước hay khối tích cần thiết của các hệ thống xử lý khác nhau, công thức trên được chuyển đổi về dạng phù hợp hơn như sau:



Giá trị thời gian lưu cần thiết để đạt được hiệu suất xử lý hữu cơ 80% trong các hệ thống khác nhau được nêu trong bảng 2.5.



Bảng 2.5 Giá trị của các hằng số thực nghiệm và thời gian lưu nước cần thiết nhằm đảm bảo hiệu suất xử lý COD trên 80% đối với các hệ thống kỵ khí khác nhau (nhiệt độ > 20oC)

Hệ thống

c1

c2

HRT (h)

UASB

0,68

0,68

5,5

BCĐ hoặc BGN

0,56

0,60

5,5

Bể lọc kỵ khí

0,87

0,50

20

Kỵ khí dòng chảy ngược

1,53

0,64

24

Hồ kỵ khí *

2,4

0,5

144 (= 6 ngày)

* Hiệu suất xử lý theo BOD
Trên thực tế, tính khả thi của một hệ thống không chỉ được xác định dựa trên khối tích cần thiết của công trình. Các ưu điểm và nhược điểm của mỗi hệ thống xử lý cũng cần được xem xét. Bể tự hoại và bể lắng hai vỏ thường ít hấp dẫn vì hiệu suất xử lý thấp và thời gian lưu cần thiết tương đối lâu. Hồ kỵ khí có hiệu suất xử lý hữu cơ cao hơn và có ưu điểm là xây dựng đơn giản hơn. Tuy nhiên, diện tích cần thiết cho hồ lại tương đối lớn và do vậy việc ứng dụng sẽ không có tính thực tế trong các khu vực đông dân và có giá thành đất cao. Bể lọc kỵ khí có nhược điểm là chi phí xây dựng cao, và đặc biệt là những khó khăn có thể xảy ra trong quá trình hoạt động do bị tắc. Từ bảng 2.5 có thể kết luận là: để có hiệu suất xử lý như nhau, bể xử lý kỵ khí dòng chảy ngược cần có thời gian lưu nước lớn hơn bể UASB từ bốn đến năm lần. Do đó, việc bố trí thiết bị tách pha trong các hệ thống có lớp bùn đáy là cần thiết. Chi phí cho thiết bị tách pha sẽ được bù lại do nhờ có các thiết bị này sẽ làm giảm được khối tích cần thiết của công trình. Khi so sánh bể UASB với bể BCĐ hoặc BGN, có thể thấy rõ rằng hai hệ thống sau có nhược điểm lớn là cần sử dụng hệ thống bơm tuần hoàn. Ngược lại, nếu có điều kiện địa hình thích hợp, bể UASB có thể không cần sử dụng bơm. Hơn nữa, bể BCĐ thường có nhiều hạn chế trong xử lý nước thải sinh hoạt như hiều suất khử các chất rắn lơ lửng thấp, khả năng lưu giữ và duy trì sinh khối trong bể rất hạn chế. Vì vậy, hệ thống UASB có thể được coi là lựa chọn phù hợp nhất trong số các hệ thống kỵ khí sử dụng cho việc xử lý nước thải sinh hoạt.

Tài liệu tham khảo


 ABIS, K.L., 2002. The Performance of Facultative Waste Stabilisation Ponds in the United Kingdom. Thesis, University of Leeds, School of Civil Engineering. 212 p.

 ALEXANDRE, O., BOUTIN, C., DUCHENE, P., LAGRANGE, C., LAKEL, A., LIENARD, A., and ORDITZ, D., 1998. Filières d’épuration adaptées aux petites collectivités. Document technique FNDAE n°22. Cemagref Editions. 96 p.

 ARTHUR, J.P., 1983. Notes on the Design and Operation of Waste Stabilization Ponds in Warm Climates of Developing Countries. Urban Development, Technical Paper 7. Washington D.C., The World Bank. 106 p.

 AYRES, R.M., ALABASTER, G.P., MARA, D.D., and LEE, D.L., 1992. A design equation for Human Intestinal Nematode Egg Removal In Waste Stabilization Ponds. Wat. Res., 26, 863-865.

 BCEOM, 1990. Application du procédé de lagunage naturel au traitement des eaux usées domestiques des collectivités de petite à moyenne importance: memento technique. Côte d’Ivoire, Abidjan : BCEOM. 36 p.

 CEMAGREF, 1985. L’exploitation des lagunages naturels : guide technique à l’usage de petites collectivités. France, Lyon : Division Qualité des Eaux, Pêche et Pisciculture du CEMAGREF, groupement de Lyon. 68 p.

 CEMAGREF, 1997. Le lagunage naturel : Les leçons tirées de 15 ans de pratique en France, 1. Coédition Cemagref Editions. 60 p.

 CURTIS, T. P., MARA, D. D., and SILVA, S. A., 1992. Influence of pH, ôxygen, and humic substances on ability of sunlight to damage faecal coliforms in waste stabilization pond water. Appl. Environ. Microbiol., 58, 1335-1343.

 DRIOUACHE, A., SIMONIS, P., WAUTHELET, M., HAHN, H.H., and HOFFMANN, E., 1997. Utilisation du biogaz à la station de Ben Sergao (Maroc) – Méthodes et résultats. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH. 55p.

 EPA, 1977a. Operation Manual Stabilization Ponds, Zickefoose, C. and Hayes R.B., Washington D.C. U.S. EPA, Office of Water Program Operations.

 EPA, 1977b. Process Design Manual Wastewater treatment facilities for sewered small communities. EPA-625/1-77-009. Ohio, Cincinnati. U.S. EPA, Office of Technology and Transfer.

 HOUNG, H.J.S. and GLOYNA, E.F., 1984. Phosphorus models for waste stabilization ponds. Journal of Environmental engineering, vol.110, n°3. Virginia, Reston: ASCE. 550–561.

 MALINA, J.F., 1971. Design for biological wastewater treatment processes. Texas, Austin : Texas University. 221 p.

 MARA, D.D., and PEARSON, 1986. Artificial freshwater environment: Waste stabilization ponds. Biotechnology, 8, 177-206. VCH Verlagsgesellschaft : Weinheim.

 MARA, D.D., and SILVA, S.A., 1986. Removal of intestinal nematode eggs in tropical waste stabilization ponds. Journal of tropical medicine and hygiene, 89(2), 71-74.

 MARA, D.D., and PEARSON, 1987. Waste stabilization ponds: Design manual for Mediterranean Europe, Copenhagen, Denmark: World Health Organization, Regional Office for Europe. 53 p.

 MARA, D.D., ALABASTER, G.P., PEARSON, H.W., and MILLS, S.W., 1992. Waste Stabilization Ponds: A Design Manual for Eastern Africa. Lagoon Technology International. Leeds, England.

 MARA, D.D., 2003. Domestic Wastewater Treatment in Developing Countries. EARTHSCAN. England.

Reed, S.C., Crites R.W., vµ Middlebrooks E.J. 1995. Qu¶n lý vµ xö lý n­íc th¶i b»ng c¸c hÖ thèng tù nhiªn. T¸i b¶n lÇn 2, McGraw-Hill, Inc., 433 pp.

 MARA D.D., 2005. Pond process design – a pratical guide. In: A. SHILTON (Ed.) : pp.168-187. Pond Treatment Technology. London : IWA Publishing.

 OFFICE INTERNATIONAL DE L’EAU, 2001. Guide: Procédés extensifs d’épuration des eaux usées adaptés aux petites et moyennes collectivités (500-5000 eq-hab).42 p.

 OSWALD, W.J., 1975. Waste Pond Fundamentals. Washington, DC: The World Bank.

 PANO, A., and MIDDLEBROOKS, E.J., 1982. Ammonia nitrogen removal in facultative wastewater stabilization ponds. Journal of the Water Pollution Control Federation, 54(4), 344-351.

 PEARSON, H.W., MARA, D.D., SMALLMAN, D.J., and MILLS, S., 1987. Physicochemical parameters influencing faecal Coliform survival in waste stabilization ponds. Wat. Sc. and Tech., 19(12), 145-152.

 PESCOD, M.B., and MARA, D.D., 1988. Design, operation and maintenance of wastewater stabilization ponds. Ch. p, Treatment and Use of Sewage Effluent for Irrigation. M.B. Pescod and A. Arar (eds). Butterworths, Sevenoaks, Kent

 REED, S.C., 1985. Nitrogen removal in wastewater stabilization ponds. Journal of the Water Pollution Control Federation, 57(1), 39-45.

 RUIHONG, Z., 2001. Biology and Engineering of Animal Wastewater Lagoons. California, Davis : University of California, Biological and Agricultural Engineering Department. 9 p.

 WHO, 1989. Health guidelines for the use of wastewater in agriculture and aquaculture. Technical Report No. 778, WHO, Geneva, 74 p.



 WHO, 2006. Guidelines for safe use wastewater, excreta and grey water. Policy and Regulatory aspects vol.1, WHO, Geneva, 100 p.
Каталог: Portals
Portals -> Phan Chau Trinh High School one period test no 2 Name: English : 11- time : 45 minutes Class: 11/ Code: 211 Chọn từ hoặc cụm từ thích hợp A, B, C, d để điền vào chỗ trống trong đoạn văn sau
Portals -> PHẦn I: thông tin cơ BẢn về ĐẠi hàn dân quốc và quan hệ việt nam-hàn quốc I- các vấN ĐỀ chung
Portals -> Năng suất lao động trong nông nghiệp: Vấn đề và giải pháp Giới thiệu
Portals -> LẤy ngưỜi học làm trung tâM
Portals -> BÀi tậP Ôn lưu huỳnh hợp chất lưu huỳnh khí sunfurơ so
Portals -> TỜ trình về việc ban hành mức thu phí tham gia đấu giá quyền sử dụng đất
Portals -> CỘng hòa xã HỘi chủ nghĩa việt nam độc lập – Tự do – Hạnh phúc
Portals -> GIẤY Ủy quyền tham dự Đại hội đồng Cổ đông thường niên năm 2016

tải về 394.2 Kb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5   6




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương