I. HÌNh thức trình bàY – KỸ NĂng thưc hiệN



tải về 73.43 Kb.
Chuyển đổi dữ liệu08.09.2016
Kích73.43 Kb.
NHỮNG ĐIỀU HỌC SINH CẦN LƯU Ý

KHI LÀM BÀI THI TN THPT MÔN TOÁN NĂM 2012

*************
I. HÌNH THỨC TRÌNH BÀY – KỸ NĂNG THƯC HIỆN:

A/ LỖI 1:

- Viết chữ xấu, cẩu thả

- Trình bày bài lộn xộn, không mạch lạc, ý tưởng không rõ ràng gây khó hiểu cho giám khảo

Cách khắc phục:

- Cố gắng viết bài rõ ràng, cẩn thận

- Phân tích đề bài, tìm cách giải ngoài nháp, sắp xếp các bước thực hiện, tính toán trước các yếu tố cần thiết

- Trình bày thành từng bước rõ ràng, riêng biệt từng nội dung, vẽ hình minh họa nếu cần

- Làm ngắn gọn, chính xác
B/ LỖI 2:

- Không đọc kỹ đề bài, nhầm lẫn các giả thiết

- Không nắm đầy đủ các yêu cầu của đề bài, chưa làm hết câu, thiếu kết luận

- Thiếu đặt các điều kiện cần thiết hoặc quên so với điều kiện sau khi giải

Cách khắc phục:

- Đọc đề cẩn thận, xác định chính xác giả thiết của đề bài. Chú ý đặt các điều kiện cần thiết

- Thực hiện đầy đủ các yêu cầu, nên làm phần kết luận cho từng câu để có thể kiểm tra lại đã thực hiện hết
các yêu cầu của câu hỏi chưa? đã so nghiệm với các điều kiện đặt ra chưa?
C/ LỖI 3:

- Chép các dữ kiện từ đề bài ra bài làm bị sai

- Tính sai một kết quả và sử dụng kết quả ấy làm tiếp dẫn tới sai hàng loạt tuy rằng cách làm đúng

Cách khắc phục:

- Hãy chắc chắn rằng các dữ kiện được chép ra từ đề bài là chính xác trước khi sử dụng

- Kiểm tra kết quả các bước quan trọng khi kết quả đó được sử dụng cho nhiều phần khác của bài làm
D/ LỖI 4:

- Làm quá sát câu sau với câu trước

- Gạch bỏ và xóa một cách cẩu thả gây mất cảm tình của giám khảo, viết chen phần sửa với phần
gạch bỏ dẫn tới dễ bị chấm sót


- Không đánh số thứ tự câu khi làm bài

- Bỏ trống nhiều chỗ trên giấy thi, làm một câu kéo dài nhiều nơi trong bài làm dẫn tới dễ bị chấm
sai, chấm sót và cộng điểm thiếu


Cách khắc phục:

- Không nhất thiết phải làm theo thứ tự câu trong đề bài, câu nào biết làm thì làm trước nhưng nên ghi rõ


bài mấy, câu mấy khi làm

- Không dùng bút xóa hay gạch bỏ cẩu thả. Dùng thước gạch chéo vào phần cần bỏ và viết lại phần đúng

vào phía dưới. Không viết kế bên hay ghi chèn vào phần đã gạch bỏ

- Nên nháp trước cách giải để dự đoán trước các khó khăn và làm trọn vẹn từng câu, tránh bỏ trống giấy thi


và làm nhiều phần của câu ở nhiều nơi trong bài
E/ LỖI 5:

- Sử dụng k‎ý hiệu tùy tiện, không giới thiệu

- Làm bài quá vắn tắt, không giải thích, thiếu lập luận

- Làm bài quá dài dòng, viết cả những biến đổi lặt vặt vào bài dẫn tới bài làm bị rối và phức tạp

- Chọn các phương pháp cầu kỳ, nhiều kỹ xảo trong khi có thể chọn một cách làm đơn giản

Cách khắc phục:

- Hãy giới thiệu k‎ý hiệu trước khi sử dụng nếu đó là một k‎ý hiệu không qui ước hoặc do học sinh tự đặt


ra (nhất là VTCP và VTPT), đồng thời cũng không nên lạm dụng ký hiệu mà làm cho bài trở nên tối nghĩa

- Tránh các phương pháp giải cầu kỳ, phương pháp tốt nhất là phương pháp đơn giản mà vẫn mang lại


kết quả, càng đơn giản càng ít sai sót và hiệu quả. Tuy nhiên không làm quá vắn tắt mà thiếu sự giải thích
và lập luận cần thiết.

- Các biến đổi lặt vặt như qui đồng mẫu số, chuyển vế rút gọn có thể làm ngoài nháp và ghi kết quả vào bài


vì thường các biến đổi này không được tính điểm trong đáp án.

- Hãy tận dụng máy tính cho việc giải pt và hệ pt.



II. NỘI DUNG CỤ THỂ:

GIẢI TÍCH :

CHƯƠNG I: Ứng dụng đạo hàm để khảo sát hàm số và vẽ đồ thị

A/ BÀI TOÁN XÉT CÁC TÍNH CHẤT CỦA HÀM SỐ:

Chú ý các bài toán:

* BT1: Xét tính đồng biến, nghịch biến của hàm số

* BT2: Tìm các điểm cực trị của hàm số (xem lại đk cần và điều kiện đủ để hàm số có cực trị)

* BT3: Tìm GTLN, GTNN của hàm số trên một miền D (đặc biệt khi D = [a,b])
B/ BÀI TOÁN KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ:

- Phải làm đầy đủ các phần, mỗi phần trên một dòng riêng biệt:

* Miền xác định

* Đạo hàm, xét dấu đạo hàm, lập Bảng biến thiên (ghi đầy đủ giá trị tại các đầu mũi tên)

* Ghi rõ :

+ khoảng tăng giảm

+ các cực trị (nếu có)

+ các giới hạn khi

* Tìm điểm uốn (hàm đa thức), tìm tiệm cận (hàm phân thức)

* Vẽ đồ thị: chú ý cần chính xác hóa đồ thị bằng cách:

+ tìm các điểm đặc biệt như giao điểm với các trục tọa độ, điểm trên nhánh vô tận, ...

+ tính đối xứng của đồ thị (tâm đối xứng, trục đối xứng)

- Hình vẽ nên thực hiện bằng bút mực, thay vì bằng bút chì vì bút chì không được xem là bút làm bài chính


thức. Có thể vẽ bút chì trước và đồ lại bằng bút mực.

- Khi thực hiện vẽ hàm số có chứa trị tuyệt đối từ một hàm số đã vẽ thì nên có phần lập luận về sự liên


hệ giữa chúng để từ đó suy ra cách vẽ.

- Chú ý:



  • Chương trình chuẩn: ; ;

  • Chương trình nâng cao: thêm hàm số và phép tịnh tiến hệ trục tọa độ

C/ CÁC VẤN ĐỀ VỀ HÀM SỐ:

- VĐ1: TÌM ĐIỂM CỐ ĐỊNH CỦA HỌ ĐỒ THỊ (Cm) với tham số m:

* Đưa phương trình (Cm) về dạng hàm đa thức theo m

* Chú ý lập luận tọa độ điểm cố định (nếu có) sẽ thỏa pt (Cm) m để dẫn đến các hệ số bằng 0

- Cần phân biệt 2 vấn đề sau để tránh nhầm lẫn:

VĐ2: BIỆN LUẬN SỐ GIAO ĐIỂM CỦA 2 ĐỒ THỊ (C1), (C2) THEO THAM SỐ m BẰNG ĐẠI SỐ

VĐ3: BIỆN LUẬN SỐ NGHIỆM PT Fm(x) = 0 THEO THAM SỐ m BẰNG ĐỒ THỊ (C): y = f(x)


VĐ 2

- Không vẽ đồ thị

- Lập PT hoành độ giao điểm của (C1) và (C2):

fm(x) = gm(x) (1)

- Số nghiệm của phương trình (1) là số giao
điểm của 2 đồ thị.

- Biện luận số nghiệm x của (1) để suy ra số

giao điểm của 2 đồ thị

- Chú ý: nghiệm của (1) là hoành độ của giao

điểm nên ta có thể biết tính chất của giao
điểm dựa vào tính chất của nghiệm

VĐ 3

- Không giải trực tiếp phương trình

- Biến đổi: Fm(x) = 0  f(x) = g(m) (*)

- PT (*) là phương trình hoành độ giao điểm của

(C): y = f(x) và đường thẳng (D): y = g(m)

- Số giao điểm của (C),(D) là số nghiệm của (*)

- Vẽ (C) và (D) trên cùng một hệ trục

- Dùng đồ thị, biện luận số giao điểm của (C) và (D)

theo m để suy ra số nghiệm của pt (*)

- Chú ý: nghiệm của (*) là hoành độ của giao điểm


nên ta có thể biết tính chất của nghiệm dựa vào
tính chất của hoành độ giao điểm

- VĐ4: TIẾP TUYẾN CỦA ĐỒ THỊ

* T/tuyến TẠI 1 điểm M(xo,yo): áp dụng công thức y–yo = f’(xo).(x–xo)

* T/tuyến biết hệ số góc, song song hay vuông góc 1 đt cho trước hay đi qua 1 điểm cho trước:

+ Cách 1: tìm tọa độ tiếp điểm M(xo,yo) dựa vào: hệ số góc tiếp tuyến bằng f’(xo)

+ Cách 2: dùng điều kiện tiếp xúc của (C): y = f(x) và đt (D): y = ax + b

(C),(D) tiếp xúc có nghiệm x (nghiệm x là hoành độ tiếp điểm)



Chú ý:

a) Khi điểm M thuộc đồ thị (C) thì chỉ có 1 tiếp tuyến tại M nhưng có thể có nhiều tiếp tuyến đi qua M

b) Chương trình nâng cao: thêm bài toán Viết phương trình tiếp tuyến chung của 2 đường cong tại điểm chung

(dùng ĐKTX của 2 đường cong để tìm nghiệm xo và viết pt tiếp tuyến với 1 đường cong tại M có hoành độ xo)



CHƯƠNG II : Hàm số lũy thừa – Hàm số mũ – Hàm số logarit

D/ HÀM SỐ MŨ VÀ LOGARIT:

- HS cần xem lại:

+ Các tính chất của hàm số mũ, đạo hàm hàm số mũ, dạng đồ thị (cơ số >1 hay cơ số <1)

+ Các tính chất và phép biến đổi lũy thừa với số mũ nguyên, hữu tỉ, thực

+ Các tính chất của hàm số logarit, đạo hàm hàm số logarit, dạng đồ thị (cơ số >1 hay cơ số <1)

+ Các tính chất và phép biến đổi logarit


- HS cần thuộc lòng các dạng PT và BPT mũ, logarit cơ bản. Nắm vững các phương pháp giải:

+ PP1: đưa về các lũy thừa cùng cơ số

+ PP2: đặt ẩn phụ (lưu ý: t = ax  đk: t > 0, t = logax  tR)

+ PP3: logarit hóa (hay mũ hóa)

+ PP4: dùng tính chất đồng biến, nghịch biến của hàm số mũ, logarit (chương trình nâng cao)
- Các lưu ý:


    • Chương trình không yêu cầu giải pt, bất pt có tham số hay có chứa ẩn đồng thời ở cơ số và số mũ hay chứa ẩn đồng thời ở cơ số và biểu thức dưới dấu logarit (VD: log4(x+2).logx2 = 1)

    • Khi giải PT, bất PT LOGARIT: cần đặt điều kiện cho các biểu thức logarit trước khi giải và so điều kiện sau khi giải xong (nếu biến đổi mà chưa đặt đk thì các phép biến đổi phải tương đương)

    • Chú ý thực hiện các biến đổi logarit sao cho không làm thay đổi đk xác định của biểu thức logarit

    • Cần xác định một biểu thức là dương trước khi lấy logarit của chúng

    • Nhớ đổi chiều bất đẳng thức khi:

+ Nhân chia hai vế cho số âm

+ Bỏ hoặc thêm cơ số hai vế khi cơ số < 1

+ Bỏ hoặc lấy logarit hai vế khi cơ số < 1
- Chương trình nâng cao: có thêm phần giải một số hệ pt mũ, logarit đơn giản

CHƯƠNG III : Nguyên hàm ,tích phân và ứng dụng

E/ TÍCH PHÂN:

* TÍNH NGUYÊN HÀM VÀ TÍCH PHÂN:



- Cần thuộc chính xác bảng các công thức nguyên hàm và các tính chất của tích phân

- Cần nắm vững các phương pháp đổi biến số [dạng u = (x) hay dạng x = (t)]

- Cần nắm vững công thức tích phân từng phần và cách áp dụng

- Lưu ý:

+ Cần phân biệt rõ 2 phương pháp đổi biến số và cân nhắc xem nên dùng phương pháp nào

+ Nhớ đổi cận tích phân khi dùng PP đổi biến số

+ Trong PP tích phân từng phần cần tránh lẫn lộn giữa nguyên hàm và đạo hàm,

chú ý cách chọn nguyên hàm v thích hợp từ dv để dẫn đến phép tính đơn giản hơn


* ỨNG DỤNG HÌNH HỌC CỦA TÍCH PHÂN:

- Tính diện tích hình phẳng: cần chú ý các vấn đề sau

+ Cách tính dựa vào hình vẽ đã có (tính trực tiếp phần đồ thị cần tính hoặc cách tính gián tiếp)

+ Cách tính không dùng hình vẽ (chú ý để dấu trị tuyệt đối bên trong dấu tích phân và cách

xử lý dấu trị tuyệt đối để tính)

+ Trong một số trường hợp, tính theo biến y sẽ đơn giản hơn tính theo biến x


- Tính thể tích vật thể tròn xoay (chú ý điều kiện áp dụng công thức):

+ Nhận trục Ox làm trục quay: (chương trình chuẩn)

+ Nhận trục Oy làm trục quay: (chương trình nâng cao)

CHƯƠNG IV : Số phức

F/ SỐ PHỨC:

- Dạng đại số, biểu diễn hình học, môđun của 1 số phức

- Các số phức liên quan với 1 số phức z: số phức đối, số phức liên hợp, số phức đối liên hợp và cách biểu

diễn, sự liên hệ về môđun của chúng


- Nắm vững các phép toán cộng, trừ, nhân, chia dạng đại số và cách tính số phức nghịch đảo

- Cần nắm được điều kiện để một số phức trở thành số thực, số ảo và cách tìm tập hợp các điểm biểu diễn

của một số phức thỏa 1 điều kiện cho trước

- Nắm được cách tính căn bậc hai của số phức dạng đại số (chú ý: không dùng k‎ý hiệu cho số phức):

+ Chương trình chuẩn: căn bậc hai của số thực âm

+ Chương trình nâng cao: căn bậc hai của số phức

- Nắm vững phương pháp giải PT bậc 2 trên tập số phức và định l‎ý cơ bản của đại số (để giải PT bậc cao):

+ Chương trình chuẩn: PT bậc hai với hệ số thực, PT quy về bậc hai với hệ số thực (chú ý  < 0)

+ Chương trình nâng cao: PT bậc hai với hệ số phức, PT quy về bậc hai với hệ số phức

- Dạng Lượng Giác của số phức (chương trình nâng cao)

+ Acgumen của số phức z và các số phức liên hợp, đối , đối liên hợp

+ Cách chuyển đổi giữa dạng đại số và dạng lượng giác

+ Nắm vững phép nhân, chia của số phức dạng lượng giác

+ Nắm vững công thức Moivre và các ứng dụng (tính lũy thừa bậc cao, căn bậc 2 và tính sin3a,

cos3a, sin4a, cos4a, … theo sina, cosa)

HÌNH HỌC :

CHƯƠNG I & II : Khối đa diện –Mặt nón ,mặt trụ, mặt cầu

G/ HÌNH HỌC KHÔNG GIAN:

* PHƯƠNG PHÁP TỔNG HỢP:

- HS cần xem lại toàn bộ các công thức tính thể tích: khối chóp, khối lăng trụ, khối cầu, khối nón, khối trụ

và công thức tính diện tích xung quanh mặt cầu, hình trụ, hình nón

- HS cần xem lại:

* Các PP chứng minh song song, vuông góc. Cách xác định và tính góc, khoảng cách

* PP tính thể tích khối đa diện: công thức, dùng tỉ số thể tích, dùng phân chia lắp ghép khối đa diện

* Định tâm và bán kính mặt cầu ngoại tiếp khối chóp và tính thể tích, diện tích xung quanh m/cầu

- Chú ý: phải vẽ hình khi làm bài, phải xác định đúng các giả thiết trước khi làm đặc biệt là giả thiết về góc

- Trong một số trường hợp thuận lợi, có thể vận dụng Phương Pháp Tọa Độ để có cách giải đơn giản hơn



CHƯƠNG III : Phương pháp tọa độ trong không gian

* PHƯƠNG PHÁP TỌA ĐỘ:

- Cần học thuộc tất cả các công thức để áp dụng chính xác, chú ý viết đúng tích vô hướng hay có hướng

- Tính toán thật cẩn thận vì dễ dẫn đến việc sai dây chuyền, đặc biệt khi tính tích có hướng của 2 vectơ

- Tránh lẫn lộn giữa phương trình đường thẳng và phương trình mặt phẳng

- Nên làm bài theo từng ý một cho rõ ràng và nên có hình vẽ minh họa kèm theo

- Một bài có thể có nhiều cách giải và dẫn tới nhiều đáp số khác nhau nhưng vẫn đúng, đặc biệt là pt đường

thẳng. Cần đưa đáp số PT đường thẳng về đúng dạng nếu đề bài có yêu cầu (PT tham số, PT chính tắc).

- Một số cách giải cần kiểm tra lại đáp số có thỏa yêu cầu đề bài hay không.

VECTƠ: + Tọa độ, môđun, các phép toán

+ ĐK 2 vectơ bằng nhau, cùng phương, vuông góc, đồng phẳng (của 3 vectơ, của 4 điểm)

+ Công thức tính diện tích hình bình hành , tam giác và Công thức tính thể tích khối hộp, tứ diện

MẶT CẦU: PT mặt cầu, cách tìm phương trình mặt cầu, vị trí tương đối của mặt cầu và mp

MẶT PHẲNG:

+ PT mặt phẳng, cách viếp pt mặt phẳng. PT các mp tọa độ, PT mp theo đoạn chắn

+ Cách xét vị trí tương đối 2 mp, tính góc của 2 mp, khoảng cách giữa 1 điểm và 1mp, giữa 2 mp //

+ Tìm hình chiếu của 1 điểm trên 1 mp



ĐƯỜNG THẲNG:

+ PT tham số và PT chính tắc, cách viết phương trình đường thẳng.

+ Cách đưa PT đường thẳng là giao tuyến của 2mp sang dạng pt tham số hoặc pt chính tắc

+ Cách xét vị trí tương đối của 2 đt. Cách viết pt đường thẳng vuông góc chung của 2 đt chéo nhau

+ Tìm hình chiếu của 1 điểm lên 1 đt, hình chiếu của 1 đường thẳng lên 1 mp

+ Chương trình nâng cao: tìm hình chiếu của 1 đt trên 1 mp



KHOẢNG CÁCH:

+ Công thức tính khoảng cách giữa 2 điểm

+ Công thức tính khoảng cách giữa 1 điểm và 1 mp

+ Khoảng cách giữa 1 điểm M và 1 đt (D):



  • Chương trình chuẩn: lý thuyết không đưa công thức tính, phải làm trực tiếp

Cách làm: tìm hình chiếu H của M trên (D) và tính độ dài MH

  • Chương trình nâng cao: áp dụng công thức

+ Khoảng cách giữa 2 đường thẳng chéo nhau (d1), (d2):

  • Chương trình chuẩn: không đưa công thức tính

Cách làm: Viết pt mp(P) chứa (d2) và song song (d1)

Tính khoảng cách từ 1 điểm M bất kỳ trên (d1) đến mp(P)



  • Chương trình nâng cao: áp dụng công thức

  • Chú ý các bài tập trang 102, 103, 104, 110, 111 trong SGK chương trình nâng cao.

  • C
    (Nguồn Báo Tuổi trẻ)
    hú ý : Đối với phần riêng học sinh chỉ được phép chọn 1 trong 2 phần .

: DesktopModules -> CMSP -> DinhKem
DinhKem -> Mã đề: 001 Họ tên: Lớp 12A
DinhKem -> DẠY Âm nhạc sau 4 NĂm nhìn lạI  (Phan Thành Hảo gv âm nhạc trường th a bình Phú, Châu Phú, An Giang)
DinhKem -> THÔng tư CỦa bộ TÀi chính số 83/2002/tt-btc ngàY 25 tháng 9 NĂM 2002 quy đỊnh chế ĐỘ thu, NỘp và quản lý SỬ DỤng phí, LỆ phí VỀ tiêu chuẩN Đo lưỜng chất lưỢNG
DinhKem -> Căn cứ Luật Tổ chức HĐnd và ubnd ngày 26 tháng 11 năm 2003
DinhKem -> Năm học đổi mới căn bản, toàn diện Giáo dục và Đào tạo tỉnh Cà Mau
DinhKem -> NHÀ thơ ANH thơ Tiểu sử
DinhKem -> Buổi họp mặt có sự tham dự của đại diện lãnh đạo của ubnd tỉnh và cơ quan ban ngành: ông Hồ Việt Hiệp, Ủy viên Ban thường vụ Tỉnh ủy, Phó Chủ tịch ubnd tỉnh; Bà Trần Thị Thanh Hương, Phó Trưởng Ban Tuyên giáo Tỉnh ủy
DinhKem -> Quy trình nhập hồ SƠ nhân sự MỚi vào phần mềm quản lý nhân sự (pmis)
DinhKem -> Môn: Tiếng Anh 10 Thời gian: 45 phút ( không kể thời gian phát đề) Họ và tên: lớp 10A …
DinhKem -> A. Thủ tục thuộc thẩm quyền giải quyết của Sở Tài nguyên và Môi trường




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2019
được sử dụng cho việc quản lý

    Quê hương