TIÊu chuẩn quốc gia tcvn 8611: 2010



tải về 0.87 Mb.
trang3/13
Chuyển đổi dữ liệu10.08.2016
Kích0.87 Mb.
#15653
1   2   3   4   5   6   7   8   9   ...   13

4.4.2.5. Đánh giá hậu quả

Hậu quả của mỗi loại kịch bản trình bày ở trên sẽ phụ thuộc vào đặc tính của LNG và các hiện tượng khác được mô tả trong TCVN 8610 (EN 1160). Đối với tính chất nguy hiểm của các môi chất khác LNG, phải tham khảo Bảng dữ liệu an toàn hóa chất (MSDS).



a) Sự bay hơi của LNG tràn

Hiện tượng bay hơi tức thời (flash, bao gồm khả năng tạo thành sol khí/huyền phù khí) phải được xem xét.

Tính toán quá trình bay hơi do truyền nhiệt phải được thực hiện sử dụng các mô hình thích hợp áp dụng.

Mô hình phải đề cập đến:

- Lưu lượng LNG và khoảng thời gian;

- Thành phần LNG;

- Bản chất đất (độ dẫn nhiệt, nhiệt dung riêng, tỷ trọng, …);

- Nhiệt độ của đất hoặc của nước;

- Điều kiện khí quyển (nhiệt độ, độ ẩm môi trường, vận tốc gió);

- Độ ổn định khí quyển hoặc biến thiên nhiệt độ.

Mô hình phải xác định được:

- Tốc độ lan truyền của vũng chất lỏng;

- Diện tích thấm ướt theo thời gian, đặc biệt là diện tích thấm ướt lớn nhất;

- Tốc độ bay hơi theo thời gian, đặc biệt là tốc độ bay hơi lớn nhất.



b) Phân tán hơi LNG trong khí quyển

Tính toán sự phân tán đám mây khí trong khí quyển của LNG bay hơi do chảy tràn và do tiếp xúc với đất hoặc nước phải được tiến hành trên cơ sở các mô hình thích hợp áp dụng.

Ít nhất các vấn đề sau đây phải được xem xét khi xác định sự phân tán hơi LNG:

- Đường kính của vũng chất lỏng bay hơi;

- Tốc độ bay hơi;

- Tính chất của hơn LNG;

- Bản chất của đất (độ dẫn nhiệt, nhiệt dung riêng, tỷ trọng,…);

- Nhiệt độ của đất hoặc nước;

- Điều kiện khí quyển (nhiệt độ, độ ẩm môi trường, tốc độ gió);

- Độ ổn định khí quyển hoặc biến thiên nhiệt độ;

- Địa hình vị trí (ví dụ sự gồ ghề/độ nhám bề mặt).

Mô phỏng quá trình phân tán hơi LNG trong khí quyển phải dựa trên sự kết hợp giữa tốc độ gió và độ ổn định khí quyển, hai thông số này có thể xảy ra đồng thời và đưa ra được khoảng cách phân tán dự đoán xa nhất theo hướng gió thổi, khoảng cách này không vượt quá 10 %.

Nếu không có thông tin nào khác, điều kiện khí quyển sau đây cần được xem xét: độ ổn định khí quyển F (PASQUILL) hoặc biến thiên nhiệt độ tương đương, với tốc độ gió là 2 m/s và độ ẩm tương đối là 50 %.

Mô hình phải xác định được:

- Nồng độ tại đường bao;

- Khoảng cách tới giới hạn cháy dưới.



c) Xả nhanh khí thiên nhiên hoặc khí thiên nhiên hóa lỏng LNG

Tính toán phân tán hơi LNG trong khí quyển từ quá trình giải phóng nhanh phải được thực hiện dựa trên các mô hình thực nghiệm thích hợp để xác định ít nhất là chiều cao hoặc độ dài của dòng hơi giải phóng ra và nồng độ khí tại điểm bất kỳ cho trước.

Nguồn xả nhanh bao gồm việc xả từ các van an toàn, không đốt khí và xả khí. Cần phải xem xét khả năng tạo thành sol khí/huyền phù khí nếu thấy thích hợp.

d) Quá áp

Sự bắt cháy khí thiên nhiên có thể tạo ra tiếng nổ gây ra sóng quá áp trong một số trường hợp cụ thể (ví dụ khu vực chật hẹp hạn chế về không gian). Dải bắt cháy của hỗn hợp khí và không khí được quy định trong TCVN 8610 (EN 1160).

Có thể áp dụng các phương pháp và mô hình được công nhận để tính quá áp, ví dụ phương pháp đa năng lượng và/hoặc phương pháp bốc cháy ở tốc độ không đổi. Hiện tượng quá áp phải được xác định rõ áp dụng cho thiết bị, công trình xây dựng, kết cấu nào.

Luôn luôn có đặc tính sóng đến ở nơi xảy ra quá áp như bồn chứa, thiết bị, công trình xây dựng hoặc kết cấu. Trong trường hợp này, có thể giả sử rằng một vụ nổ bùng cháy gần một bồn chứa gây ra quá áp đối với nửa chu vi của bồn chứa trong trường hợp xấu nhất. Ứng suất trong bồn chứa gây ra bởi quá áp được xác định bằng tính toán động. Đối với cấu trúc khác, ứng suất có thể được xác định bằng tính toán tĩnh.

Phải xem xét ảnh hưởng của quá áp do đám cháy dưới bồn chứa.

Ảnh hưởng của sóng phản xạ trên những đối tượng đó là trách nhiệm của nhà cung cấp.



e) Bức xạ

Phải thực hiện tính toán bức xạ gây ra bởi sự cháy hơi LNG tại vũng chất lỏng bay hơi, vòi phun LNG, hoặc nơi giải phóng khí thiên nhiên trên cơ sở mô hình thích hợp áp dụng.

Mô hình phải đề cập đến các vấn đề sau:

- Diện tích của đám cháy hoặc kích thước của ngọn lửa;

- Năng lượng thoát nhiệt bề mặt của đám cháy hoặc ngọn lửa [xem TCVN 8610 (EN 1160)];

- Nhiệt độ môi trường, tốc độ gió và độ ẩm tương đối.

Tính toán bức xạ phải dựa trên sự kết hợp giữa tốc độ gió và các điều kiện khí quyển xảy ra đồng thời và gây ra bức xạ dự đoán lớn nhất không vượt quá 10 %.

Nếu không có thông tin nào khác, phải xét đến điều kiện khí quyển sau đây: tốc độ gió là 10 m/s và độ ẩm tương đối là 50 %.

Mô hình phải xác định được bức xạ tới tại những khoảng cách và độ cao khác nhau.

4.4.3. Nâng cao an toàn

Khi đánh giá an toàn chỉ ra các giá trị giới hạn an toàn trong Phụ lục A bị vượt quá hoặc yêu cầu phải cải thiện mức độ rủi ro (xem Phụ lục L), phải áp dụng các biện pháp sau đây:

- Thiết lập hệ thống an toàn cho phép phát hiện sớm rò rỉ và cho phép hạn chế hậu quả của đám cháy (xem 4.5 và 13);

- Tăng cường pha loãng đám mây khí dễ cháy;

- Loại bỏ nguồn có khả năng gây cháy trong đám mây khí dễ cháy;

- Giảm tốc độ bay hơi thông qua việc giảm thiểu truyền nhiệt;

- Giảm bức xạ nhiệt bằng màn nước, hệ thống nước chảy tràn, bọt hoặc cách nhiệt;

- Giảm khoảng cách phân tán hơi bằng cách làm ấm đám mây khí sử dụng bọt hoặc phun nước dạng sương;

- Tăng khoảng không gian giữa các thiết bị;

- Bảo vệ công trình tránh sự nổ;

- Hệ thống báo động như là thiết bị ngắt có mặt kính, điện thoại, máy nhắn tin, hệ thống truyền hình cáp, còi báo động.

4.5. Kỹ thuật an toàn trong quá trình thiết kế và xây dựng

4.5.1. Giới thiệu

Trong quá trình thiết kế và xây dựng, vấn đề an toàn phải luôn được nghiên cứu kỹ lưỡng để đảm bảo mức độ an toàn phù hợp với đánh giá mối nguy hiểm.

Quản lý an toàn trong quá trình thiết kế và xây dựng phải bao gồm sự xem xét thiết kế và thường xuyên xem xét lại như trình bày tại 4.5.2 và 4.5.3.

4.5.2. Thiết kế

4.5.2.1. Đặc điểm thiết kế an toàn chung

a) Thiết kế thiết bị và đường ống ở nhiệt độ thấp

Phải lựa chọn áp suất và nhiệt độ thiết kế của đường ống và thiết bị sao cho đáp ứng tất cả các điều kiện vận hành và sự cố dự đoán trước. Các tài liệu thích hợp được liệt kê trong TCVN 8610 (EN 1160).

Ứng suất trong đường ống và thiết bị chịu ảnh hưởng của hiện tượng co/giãn do thay đổi nhiệt độ, khả năng xảy ra sốt nhiệt và phương pháp cách nhiệt. Phải xem xét các hiện tượng vật lý như là: búa chất lỏng, tạo bong bóng, bay hơi nhanh và dòng chảy hai pha. Có thể áp dụng những gợi ý trong Điều 9. Đường ống chính được khuyến cáo duy trì ở điều kiện lạnh, ví dụ bằng cách tuần hoàn LNG, cách nhiệt.

b) Phân loại vùng nguy hiểm

Tất cả các lắp đặt đều phải qua phân tích vùng nguy hiểm. Nội dung tham khảo cho loại phân tích này phải tuân theo tiêu chuẩn liên quan (EN 1127-1 và EN 60079-10).

Hình dạng và quy mô của mỗi vùng có thể khác nhau tùy thuộc vào tiêu chuẩn chuyên ngành hoặc quốc gia được áp dụng, tuy nhiên phải tuân theo các phương pháp luận được thiết lập trong EN 60079-10. Cần phải tham chiếu TCVN 8613 (EN 1532) đối với cầu tàu, đặc biệt là vùng nguy hiểm phát sinh khi phương tiện chuyên chở LNG neo đậu dọc theo cầu tàu.

Việc lựa chọn thiết bị sử dụng tại các vị trí cụ thể phải được xác định trên cơ sở phân loại vùng nguy hiểm tại các vị trí này và phải tuân theo EN 1127-1 và bộ tiêu chuẩn EN/IEC (phần 0 đến 25).



c) Bảo vệ quá áp bên trong

Phải cung cấp các thiết bị an toàn để ngăn chặn rủi ro quá áp bên trong kể cả những rủi ro do đám cháy.

Việc xả LNG từ các thiết bị an toàn thông thường (van an toàn, van xả giảm áp) được khuyến cáo dẫn tới hệ thống đốt/xả khí hoặc bồn chứa. LNG xả ra từ van an toàn của bồn chứa và máy hóa hơi, nếu không được dẫn tới hệ thống đốt/xả khí, thì phải được dẫn tới vị trí an toàn được xác định trong đánh giá mối nguy hiểm.

Nếu áp suất xả cao và thấp được dẫn tới cùng một hệ thống thì phải tránh nguy cơ quá áp ngược. Nếu hiện tượng quá áp ngược xảy ra trong hệ thống xả áp suất thấp do xả áp suất cao, khi đó cần phải xem xét đến hệ thống đốt/xả khí riêng biệt cho xả áp suất cao và thấp.



d) Giảm áp suất khẩn cấp

Khuyến cáo sử dụng hệ thống giảm áp suất.

Mục đích của biện pháp này là để:

- Giảm áp suất nội tại;

- Giảm nguy cơ rò rỉ;

- Tránh nguy cơ đường ống và bồn chịu áp suất chứa LNG, chứa chất làm lạnh hydrocacbon hoặc chứa khí bị hư hỏng do bức xạ bên ngoài.

Thiết bị giảm áp suất phải cho phép áp suất của một hay nhiều thiết bị giảm một cách nhanh chóng. Khí xả ra phải được chuyển tới hệ thống đốt/xả khí có khả năng làm việc ở nhiệt độ thấp do quá trình giảm áp suất gây nên.

Phải bố trí các van cô lập, được kích hoạt từ phòng điều khiển hoặc từ xa, hoặc được kích hoạt tự động sao cho hệ thống thiết bị có thể được cô lập thành các cụm khác nhau, và cô lập các thiết bị nhạy cảm khi có yêu cầu. Điều này giúp giảm áp suất từng khu vực nhà máy, trong khi hạn chế được hydrocacbon vào trong vùng có đám cháy.



e) Hệ thống kiểm soát an toàn

Nhà máy phải được trang bị hệ thống kiểm soát an toàn (xem Điều 14) để xác định, thông báo và phản ứng thích hợp với những tình huống nguy hiểm. Hệ thống kiểm soát an toàn phải độc lập với hệ thống kiểm soát quy trình sản xuất và phải xác định được mối nguy hiểm, tự động đưa nhà máy trở lại điều kiện làm việc an toàn.



f) Tính an toàn riêng

Phải cung cấp các biện pháp bảo vệ tính an toàn riêng để:

- Chứa LNG tràn trong phạm vi hàng rào, và giảm thiểu khả năng có thể xảy ra nguy cơ lan tràn đám mây hơi bên ngoài hàng rào ngoại vi nhà máy;

- Giảm thiểu khả năng đám cháy tại một khu vực bất kỳ trong nhà máy lan ra khu vực khác.

- Giảm thiểu thiệt hại tại khu vực liền kề với đám cháy bằng cách sử dụng khoảng cách phân chia, giảm đến mức thấp nhất lượng hydrocacbon là nguồn chất gây cháy (bằng cách phân chia nhà máy thành các vùng cháy khác nhau và bằng các van cô lập).

Các biện pháp bảo vệ tính an toàn riêng được nêu chi tiết tại 13.1.



g) Chống giòn và chống cháy bị động

Phải có biện pháp bảo vệ chống giòn và cháy bị động để:

- Bảo vệ thiết bị và cấu trúc nâng đỡ chính từ đám cháy cục bộ, giảm đến mức thấp nhất đám cháy lan rộng và gây nguy hiểm cho nhân viên xử lý sự cố;

- Bảo vệ bộ phận cấu trúc chính khỏi hư hỏng giòn gẫy do giãn nở nhiệt cục bộ, gây nên sụp đổ toàn bộ cấu trúc.

Biện pháp bảo vệ bị động được trình bày chi tiết tại 13.2.

h) Chống cháy chủ động

Phải cung cấp thiết bị và/hoặc hệ thống để kiểm soát và ứng cứu các tình huống khẩn cấp.

Các thiết bị và hệ thống này được mô tả tại 13.6.

i) Biện pháp an toàn bổ sung cho nhà máy LNG

Rò rỉ LNG và hydrocacbon lỏng như khí tự nhiên dạng lỏng (NGL) và chất làm lạnh tạo ra đám mây hơi dễ cháy nặng hơn không khí. Do vậy nhà máy phải được thiết kế sao cho loại bỏ hoặc giảm tới mức thấp nhất số lượng và khả năng xảy ra phát thải do sự cố và theo định kỳ những chất lỏng này.

Điều này đạt được bằng cách sử dụng hệ thống quản lý an toàn trong suốt quá trình thiết kế, mua sắm thiết bị, chế tạo, xây dựng và vận hành nhà máy để đảm bảo rằng công nghệ tối ưu nhất được áp dụng. Phải xem xét cụ thể các vấn đề sau đây:

- Trong điều kiện cho phép, nhà máy và bồn chứa chất lỏng dễ cháy phải được đặt ở nơi thông thoáng; tuy nhiên, công tác bảo dưỡng và điều kiện khí hậu sẽ ảnh hưởng đến quyết định này;

- Mặt bằng nhà máy phải được bố trí sao cho giảm đến mức thấp nhất sự tắc nghẽn giao thông nội bộ;

- Đường ống bố trí linh hoạt thích hợp để đáp ứng tất cả các điều kiện vận hành nhà máy;

- Số lượng mặt bích trên đường ống phải được giảm tới mức tối thiểu bằng cách sử dụng các van hàn trên đường ống, cùng với sự xem xét kỹ lưỡng về chạy thử, cô lập và bảo dưỡng. Khi sử dụng mặt bích, phải lựa chọn gioăng đệm đảm bảo chất lượng theo TCVN 8614 (EN 12308), phù hợp cho việc kết nối; trong điều kiện cho phép, mặt bích phải được lắp theo hướng sao cho nếu xảy ra rò rỉ thì dòng môi chất không gây ảnh hưởng đến các thiết bị xung quanh;

- Van xả, phải lắp đặt ở vị trí cuối đường ống nhằm giảm nguy hiểm tới mức thấp nhất; áp suất thiết kế phải cao hơn áp suất vận hành một khoảng đủ lớn để giảm tới mức thấp nhất tần suất hoạt động của van xả;

- Phải sử dụng máy bơm được niêm phong kín hoặc động cơ và máy bơm chìm cho LNG và LPG;

- Bề mặt được mạ kẽm được khuyến cáo đặt ở vị trí tránh khả năng kẽm nóng chảy gây nhiễm bẩn đường ống và thiết bị bằng thép không gỉ khoáng austenite trong trường hợp cháy, có khả năng dẫn đến giòn nứt vỡ hoặc hư hỏng nhanh chóng;

- Phải chú ý tới việc lắp đặt vật liệu kẽm và nhôm lên trên hệ thống bằng đồng và thép không có lớp bảo vệ bề mặt. Nếu nhôm hoặc kẽm bị nung nóng trong thời gian dài cùng với vật liệu thép hoặc đồng, vật liệu đó sẽ tạo ra các lỗ hoặc vết châm kim do hình thành hợp kim trong quá trình vận hành sau này. Hiện tượng này không xảy ra liên tục nhưng sẽ gây ảnh hưởng đến tính toàn vẹn của nhà máy trong vận hành sau này (xem [14]);

- Phải lắp đặt van cô lập gần nhất đến mức có thể với vòi phun, nhưng ở bên ngoài ống bọc, trên đường xuất chất lỏng của bồn chịu áp lực chứa chất lỏng dễ cháy. Những van cô lập này có thể vận hành từ xa bằng nút bấm đặt tại vị trí an toàn hoặc vận hành tự động bằng thiết bị đóng ngắt khẩn cấp ESD (xem Điều 14)



j) Bồn hứng chất lỏng tràn

Quy mô các bồn hứng chất lỏng tràn và kênh thu gom chất lỏng tràn đối với thiết bị và đường ống LNG và hydrocacbon phải được đưa vào nội dung trong đánh giá mối nguy hiểm (xem 4.4). Nhìn chung việc thu gom chất lỏng tràn tại điểm nối trên đường ống LNG và hydrocacbon không phân nhánh, không có mặt bích, hoặc thiết bị kết nối, thì không được đánh giá mối nguy hiểm.

Nếu yêu cầu, phải thiết kế bồn hứng chất lỏng tràn để đối phó với nguy cơ rò rỉ được xác định trong đánh giá mối nguy hiểm.

LNG tràn phải cho thoát xuống bồn hứng chất lỏng tràn có chất tạo bọt hoặc biện pháp khác để kiểm soát quá trình tăng cường bay hơi.

Phải áp dụng phương án dự phòng thu hồi nước được nêu tại 6.8.4.

4.5.2.2. Đặc trưng hiện trường: bảo vệ địa chấn

Nhà máy phải được thiết kế để có thể nhanh chóng vận hành trở lại sau động đất OBE (xem quy định trong 3).

Các hệ thống sau đây phải đủ khả năng chống chịu các tác động gây ra bởi động đất mạnh hơn (từ cấp độ OBE cho tới cấp độ SSE):

- Các hệ thống mà sự cố gẫy, đứt, vỡ có thể gây nguy hiểm cho nhà máy;

- Hệ thống bảo vệ yêu cầu phải vận hành để giữ mức an toàn tối thiểu.

Để đạt mục đích này, hệ thống nhà máy và các bộ phận phải được phân loại trên cơ sở tầm quan trọng (xem Phụ lục C). Sự phân loại này phải được phân tích khi đánh giá mối nguy hiểm:

- Nhóm A: các hệ thống quan trọng đối với sự an toàn của nhà máy hoặc các hệ thống bảo vệ yêu cầu phải vận hành để giữ mức an toàn tối thiểu. Những hệ thống này phải duy trì hoạt động ngay cả khi xảy ra động đất OBE và SSE. Hệ thống thiết bị đóng ngắt khẩn cấp và bồn chứa LNG phụ được phân loại nhóm A.

- Nhóm B: các hệ thống thực hiện chức năng quan trọng đối với vận hành nhà máy hoặc hệ thống mà sự cố gãy, đứt, vỡ có thể gây nguy hiểm cho nhà máy, dẫn đến tác động lớn đến môi trường hoặc gây ra những thiệt hại hậu quả khác. Những hệ thống này phải duy trì hoạt động sau khi xảy ra động đất OBE và phải giữ được sự nguyên vẹn trong trường hợp xảy ra động đất SSE. Thiết bị tồn chứa LNG chính gồm tất cả các loại được phân loại nhóm B.

- Nhóm C: các hệ thống khác. Những hệ thống này phải duy trì hoạt động sau động đất OBE và không bị hư hỏng hoặc gây ra tác động cho các hệ thống và bộ phận khác sau động đất SSE.

Những hệ thống này bao gồm các thiết bị, đường ống, van, thiết bị đo đếm, nguồn cấp điện và các thiết bị phụ trợ liên quan. Phải thiết kế kết cấu theo phân loại của bộ phận quan trọng nhất trong hệ thống mà kết cấu đó giá đỡ.

Công trình xây dựng có chức năng an toàn hoặc thường xuyên có người làm việc bên trong phải được thiết kế sao cho giữ được sự nguyên vẹn trong trường hợp động đất SSE. Hệ thống cấp nhiệt, thông gió và điều hòa không khí phải thiết kế để đáp ứng đầy đủ các tiêu chí của hệ thống được phân loại trong công trình xây dựng.

4.5.3. Đánh giá lại

Phải tổ chức đánh giá lại theo các tiêu chí áp dụng nghiêm ngặt của hệ thống QA đảm bảo chất lượng tổng thể (xem 15).

Việc đánh giá lại phải tối thiểu bao gồm:

- Phân tích mối nguy hiểm sơ bộ;

- Đánh giá lại việc bố trí mặt bằng;

- Đánh giá rủi ro vận hành (HAZOP - hazard and operability);

- Đánh giá lại công tác bảo dưỡng và khả năng thực hiện;

- Đánh giá lại mức độ nguyên vẹn an toàn của công trình (SIL - safety integrity level);

- Đánh giá lại công tác chuẩn bị khởi động của nhà máy.

4.6. An toàn trong vận hành sản xuất

4.6.1. Chuẩn bị vận hành nhà máy

Công tác chuẩn bị vận hành nhà máy phải bao gồm:

- Đào tạo nhân lực, theo đề cương trong 17;

- Hoàn thành các quy trình vận hành, bảo dưỡng và kiểm tra nhà máy;

- Hoàn thành các quy trình đảm bảo an toàn, an ninh, được tích hợp với quy trình khẩn cấp tại bến cảng và quy định an ninh đối với cơ sở vật chất cảng và tàu quốc tế (ISPS) có liên quan.

4.6.2. An toàn khi vận hành nhà máy

Phải đảm bảo an toàn khi vận hành nhà máy thông qua các biện pháp sau đây:

- Kiểm soát vận hành, hệ thống giám sát và bảo vệ bao gồm cả phiếu công tác;

- Giảm nguồn gây cháy không được kiểm soát;

- Kiểm soát tại chỗ và từ xa hệ thống chữa cháy.

5. Cơ sở vật chất tại cầu tàu và cảng biển

5.1. Yêu cầu chung

Điều này đề cập đến vấn đề lựa chọn địa điểm, thiết kế kỹ thuật, đào tạo trước vận hành và yêu cầu an toàn của cơ sở vật chất tại cầu tàu và cảng biển.



5.2. Lựa chọn địa điểm

Vị trí của cầu tàu tại kho cảng LNG là yếu tố quan trọng nhất phải xem xét để xác định rủi ro chung của quá trình giao nhận giữa tàu và cảng, và cũng là nghiên cứu chi tiết để xác định vị trí nhiều khả năng được lựa chọn nhất trong giai đoạn thiết kế đầu bài của dự án. Xác định vị trí nào được chấp nhận trong từng hoàn cảnh cụ thể phải theo đánh giá rủi ro thực tế đã xảy ra trong quá trình vận hành tại vị trí lân cận và giao thông trong bến cảng.

Các điều khoản trong TCVN 8613 (EN 1532) phải được áp dụng trong thiết kế cầu tàu và giao nhận giữa tàu và cảng. Tham khảo thêm các tài liệu quốc tế liên quan khác.

5.3. Thiết kế kỹ thuật

Phải áp dụng tiêu chuẩn phù hợp về kết cấu công trình biển để lựa chọn thông số thiết kế liên quan và xác định phương pháp tính toán lực phát sinh trên kết cấu cầu tàu. Tính toán phải tính đến điều kiện đất, cộng thêm tải trọng tác dụng lên cầu tàu tại kho cảng LNG do hiện tượng tự nhiên như gió, thủy triều, sóng, nhiệt độ thay đổi, băng, động đất và những tác động do vận hành như neo buộc tàu, giao nhận hàng, các phương tiện giao thông qua lại khi xây dựng, vận hành, bảo dưỡng.

Phải có nghiên cứu về khả năng tương thích để đảm bảo công suất của các tàu sẽ neo đậu an toàn tại kho cảng [xem TCVN 8613 (EN 1532)].

Trong thiết kế phải xem xét khả năng LNG tràn, đặc biệt là ở khu vực liền kề với hệ thống cần giao nhận LNG. Các phương án dự phòng ngăn chặn tràn LNG, chống giòn kết cấu thép cácbon, hoặc các biện pháp thích hợp khác có thể được xem xét.

Phòng điều khiển cầu tàu phải được trang bị đầy đủ phương tiện thông tin liên lạc với tàu và phòng điều hành kho cảng. Phòng điều khiển cầu tàu phải có các thiết bị điều khiển ngắt khẩn cấp, thiết bị xả áp cho hệ thống giao nhận LNG, thiết bị kiểm soát hơi, thiết bị chữa cháy điều khiển từ xa tại cầu tàu. Phải có thiết bị giám sát điều kiện thời tiết, biển, vị trí tàu, độ căng của dây neo buộc tàu.

Phải trang bị hệ thống dò tìm phát hiện và cảnh báo rò rỉ LNG hoặc khí thiên nhiên và cảnh báo cháy. Hệ thống này khi được kích hoạt sẽ tự động khởi động thiết bị ngắt khẩn cấp của hệ thống giao nhận giữa tàu và bờ, phát tín hiệu báo động trong phòng điều khiển cầu tàu, phòng điều khiển kho cảng, đồng thời liên lạc với tàu qua điện thoại hoặc liên kết dữ liệu cáp quang. Có thể chấp nhận hệ thống kết nối khí nén như là phương án dự phòng.

Phải sử dụng hệ thống giao nhận chuyên dụng cho công trình biển để giao nhận LNG giữa tàu và cảng, đi kèm với khớp nối ngắt khẩn cấp vận hành bằng động cơ theo TCVN 8612 (EN 1474).

Phải trang bị móc neo buộc tàu tháo nhanh và hệ thống này phải được thiết kế sao cho thao tác vận hành bằng một nút bấm, hoặc hư hỏng một bộ phận không thể giải phóng đồng thời tất cả các móc neo buộc.



5.4. An toàn

Tại nơi tàu neo đậu, phải có đường vào và ra dành cho xe hoặc tàu chữa cháy, cứu thương hoặc kiểm soát ô nhiễm.

Trên cầu tàu bên cạnh đường ô tô vào, có thể bố trí lối đi bên cạnh nếu cần thiết.

Phải bố trí lối thoát hiểm khi xảy ra sự cố cháy hoặc chất lỏng tràn. Từ bất kỳ vị trí nào tại nơi tàu neo đậu cũng có thể thoát ra vị trí an toàn. Có thể thoát ra nhanh nhất bằng cách bố trí hai đường thoát hiểm độc lập:

- Đường đi bộ phụ;

- Xuồng dự phòng.

Phải bảo vệ đường thoát hiểm bằng phun nước nếu đánh giá mối nguy hiểm thấy cần thiết.

Đường lên tàu từ cầu tàu phải tuân theo các yêu cầu trong TCVN 8613 (EN 1532).

Người không phận sự không được phép vào khu vực cầu tàu. Tại những nơi sử dụng rào chắn an ninh, phải lưu ý đến quy định đề phòng cháy và lối thoát khẩn cấp.

6. Hệ thống tồn chứa và ngăn tràn

6.1. Yêu cầu chung

Thiết kế và chế tạo bể chứa LNG theo TCVN 8615-1 (EN 14620-1).



6.2. Các loại bể chứa

Các loại bể chứa đáp ứng yêu cầu nêu trong 6.3.1 được quy định trong TCVN 8615-1 (EN 14620-1):

- Bể chứa kim loại hình trụ đơn;

- Bể chứa hình trụ kép, lớp trong bằng kim loại, lớp ngoài bằng bê tông hoặc kim loại;

- Bể chứa tổ hợp, hình trụ, lớp trong bằng kim loại, lớp ngoài bằng bê tông hoặc kim loại;

- Bể chứa bê tông hình trụ dự ứng lực có vách kim loại bên trong.

Có thể chấp nhận các loại bể chứa khác với điều kiện tính an toàn của các loại bể chứa đó được chứng nhận là phù hợp với quy định nêu tại 6.3.1. Ngoài ra còn có các loại bể chứa khác:

- Bể chứa bê tông hình trụ chịu nhiệt độ siêu lạnh: lớp trong bằng bê tông, lớp ngoài bằng bêtông dư ứng lực;

- Bể chứa hình cầu.

Các loại bể chứa khác nhau được mô tả trong Phụ lục H.

Bể chứa có thể được đặt nổi ở trên mặt đất, hoặc nửa ngầm, hoặc chôn ngầm dưới đất, hoặc đặt trong hầm. Móng bè của bể chứa có thể được đỡ bằng các cọc nổi. Loại nền móng phụ thuộc vào kết quả khảo sát nghiên cứu đất và địa chấn.

6.3. Nguyên tắc thiết kế

6.3.1. Yêu cầu chung

Đối với thiết bị mà áp suất thiết kế lớn hơn 50 mbar phải đáp ứng các yêu cầu của các tiêu chuẩn đang áp dụng cho việc thiết kế bồn chứa chịu áp lực (xem EN 13445).

Bể chứa LNG bằng thép, đáy phẳng, hình trụ thẳng đứng phải đáp ứng các quy định trong TCVN 8615 (EN 14620).

Bể chứa LNG bằng bê tông chịu nhiệt độ siêu lạnh hình trụ và bể chứa hình cầu phải được thiết kế theo các quy định của các tiêu chuẩn hoặc quy chuẩn đang áp dụng và các yêu cầu liên quan đến tồn chứa LNG trong tiêu chuẩn này.

Bể chứa LNG hình cầu thường sử dụng trên phương tiện chuyên chở LNG (Quy phạm IMO) và có thể sử dụng nguyên tắc thiết kế giống như vậy cho bể chứa trên bờ.

Phải thiết kế bể chứa LNG để:

- Tồn chứa chất lỏng an toàn ở nhiệt độ siêu lạnh;

- Cho phép nạp và xả LNG an toàn;

- Cho phép xả khí bay hơi một cách an toàn;

- Tránh sự xâm nhập của không khí và hơi ẩm, trừ trường hợp bất khả kháng, để tránh điều kiện chân không trong không gian hơi;

- Giảm đến mức thấp nhất công việc sinh nhiệt ở chỗ rò rỉ, phù hợp với yêu cầu vận hành và tránh đóng tuyết;

- Chống chịu được thiệt hại gây ra mất khả năng tồn chứa do các yếu tố nội tại và ngoại lai nêu ở Điều 4;

- Vận hành an toàn trong dải áp suất thiết kế;

- Chịu được số chu kỳ nạp và xả, số lần vận hành làm lạnh và sưởi nóng theo kế hoạch trong thiết kế.




tải về 0.87 Mb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5   6   7   8   9   ...   13




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương