Table of contents 1 Why is particle size important?


WHEN TO CHOOSE LASER DIFFRACTION



tải về 7.54 Mb.
Chế độ xem pdf
trang31/33
Chuyển đổi dữ liệu17.09.2022
Kích7.54 Mb.
#53206
1   ...   25   26   27   28   29   30   31   32   33
Particle Guidebook 09-2019

WHEN TO CHOOSE LASER DIFFRACTION
Laser diffraction is the most popular particle size technique for reasons including 
speed, ease of use, and flexibility. The most basic laser diffraction system can
measure solid particles in suspensions and emulsions. With the addition of a dry 
powder feeder the instrument can then also measure dry powders in air. This is a 
low concentration technique, so dilution is often required. The complex refractive 
index of the sample and diluent must be known for optimum accuracy, but this 
information is easier to obtain than is often indicated (more often by competitors 
than informed scientists). The HORIBA LA-960 has a wide dynamic range capable 
of measuring down to 30nm and up to 5000µm. This unique ability to measure 
particles < 100nm as well as agglomerates as large as hundreds of microns makes 
this a credible choice even for nanotechnology applications. Since this is such a 
powerful, flexible technique laser diffraction is often the best option for companies
buying their first analyzer, or hoping to satisfy multiple needs and applications.
30


WHEN TO CHOOSE DYNAMIC LIGHT SCATTERING
Dynamic Light Scattering (DLS) can measure suspensions and emulsions from 
1nm to 1µm. Both the lower and upper limits are sample dependent. The 
lower limit is influenced by concentration and how strongly the particles scatter
light. A low concentration sample of weakly scattering particles near 1nm can 
be extremely difficult or at least difficult to reproduce. The upper size limit is
determined mainly by the density of the particles. DLS algorithms are based on 
all particle movement coming from Brownian motion. Motion due to settling is not 
interpreted correctly by DLS systems. In addition, particles settled on the bottom 
of the sample cuvette can not be inspected by the laser light source. Particles 
with a high density will settle more quickly than low density particles. The upper 
limit of DLS may be 8µm for emulsion samples where the two phases have 
similar density. The upper limit of uranium particles may be as small as 300nm. 
The upper limit of particles with a density of 1.7 may be around 1µm.
Using DLS does not require any knowledge of the sample RI (it would be required 
to convert from intensity to volume distribution), or concentration. What is 
required is viscosity, especially for higher concentration samples. Although most 
modern DLS systems claim the ability to work at higher concentrations, this 
is again sample dependent. Serious DLS work could involve a dilution study 
to determine the nature of the particle-particle interactions and presence of 
multiple scattering. Easy samples are simply a matter of pipetting the sample 
into a cuvette and clicking one button. More sophisticated DLS systems can also 
measure other sample characteristics including zeta potential, molecular weight, 
and second virial coefficient. Generating this additional information may require a
greater skill set of the operator.

tải về 7.54 Mb.

Chia sẻ với bạn bè của bạn:
1   ...   25   26   27   28   29   30   31   32   33




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương