TRƯỜng đẠi học khoa học tự nhiên viện khoa học và CÔng nghệ việT NAM viện hoá HỌC



tải về 0.51 Mb.
trang5/7
Chuyển đổi dữ liệu29.07.2016
Kích0.51 Mb.
#9246
1   2   3   4   5   6   7

CHƯƠNG 3: KẾT QUẢ VÀ THẢO LUẬN


3.1. Kết quả tổng hợp

3.1.1. Kết quả tổng hợp axit p-hydroxymadelic

Axit p-hydroxymadelic là hợp chất trung gian quan trọng trong tổng hợp atenolol. Ngoài axit p-hydroxymadelic, 2 đồng phân nữa của nó là các axit om-hydroxymandelic cùng được biết đến như là các hợp chất kháng khuẩn in vitro ( Kháng E.typhistaphylococcus aureus). Về mặt cấu tạo, axit p-hydroxymandelic có trung tâm bất đối, do đó axit này xuất hiện các đồng phân quang học. Trong thực tế, khi điều chế các axit này bằng phương pháp hoá học chúng ta nhận được hỗn hợp raxemic của các axit hydroxymandelic.

Để tổng hợp hỗn hợp raxemic của axit p-hydroxymandelic, có khá nhiều phương pháp được giới thiệu. Tuy nhiên, hai con đường thường hay được sử dụng nhất là đi qua dẫn xuất nitrin và hydroxyankyl hoá trực tiếp phenol, ví dụ tổng hợp axit p-hyđroxymanelic qua con đường nitrin:

Ngoài ra một con đường khác được lựa chọn để tổng hợp các axit p-hydroxymandelic là thực hiện phản ứng trực tiếp giữa phenol và axit glyoxylic

So với các phương pháp trên thì phương pháp này thực hiện ở điều kiện nhiệt độ và áp suất thường, quy trình phản ứng không phức tạp và hiệu suất có thể chấp nhận được. Do đó chúng tôi lựa chọn phương pháp này để tổng hợp axit p-hydroxymandelic từ phenol và axit glyoxylic loại 50% trong nước trong môi trường kiềm. Theo lý thuyết phản ứng thì sản phẩm tạo thành luôn là 2 dạng đồng phân axit op-hydroxymandelic và tỷ lệ 2 dạng này phụ thuộc vào nhiệt độ phản ứng. Ở đây chúng tôi tiến hành phản ứng ở nhiệt độ lúc đầu là 10-150C, sau đó nâng nhiệt độ phản ứng lên 350C trong thời gian 3 giờ, sau khi axit hoá, loại bỏ phenol dư và chiết bằng etylaxetat (EtOAc) để thu lấy sản phẩm axit p-hyđroxymanelic màu trắng, có nhiệt độ nóng chảy 98-1000C phù hợp với tài liệu [49], hiệu suất 65%. Thực nhiệm cho thấy, hiệu suất phản ứng phụ thuộc vào nhiệt độ lúc nhỏ giọt và nhiệt độ lúc duy trì phản ứng. Ảnh hưởng của các yếu tố này đến hiệu suất của phản ứng cũng đã được khảo sát và kết quả được đưa ra ở bảng 2.



Bảng 2: ảnh hưởng của nhiệt độ đến phản ứng tổng hợp axit p-hydroxymandelic

Ảnh hưởng của nhiệt độ lúc nhỏ giọt

Ảnh hưởng của nhiệt độ lúc phản ứng

STT

Nhiệt độ

Hiệu suất

STT

Nhiệt độ

Hiệu suất

1

2

3



4

5


10-15

20

30



50

Không k/ soát



65

62

45



28

0


1

2

3



4

5


35

45

60



80

100


65

60

56



40

30


Kết luận: Phản ứng tổng hợp axit p-hydroxymandelic được tiến hành với lượng dư phenol trong môi trường kiềm ở nhiệt độ 350C cho hiệu suất tốt trong điều kiện nghiên cứu. Nhiệt độ khi cho dung dịch NaOH vào và nhiệt độ phản ứng được khống chế lần lượt là 10-150C và 350C. Nhiệt độ cao hơn sẽ ưu tiên cho phản ứng phụ tạo dẫn xuất axit o-hydroxymandelic và phản ứng Canizzaro làm giảm hiệu suất của phản ứng tạo axit p-hydroxymandelic.

Cấu trúc của sản phẩm được xác định bằng các phương pháp phổ hồng ngoại (FT-IR) và phổ cộng hưởng từ hạt nhân (NMR).

Phổ hồng ngoại FT-IR của sản phẩm đo ở dạng viên nén với KBr (phụ lục 1.1). Trên phổ hồng ngoại xuất hiện các băng sóng rộng, cường độ lớn với đỉnh ở 3477,36 cm-1 của dao động hoá trị tự do nhóm –OH, dao động hoá trị đặc trưng của vòng benzen xuất hiện tại 3241,25 cm-1 (C-H thơm), các băng sóng 2940,76 của liên kết C-H thẳng; 1693,45 của liên kết C=O của axit; 1610,52 cm-1 của liên kết C=C trong vòng thơm.

Phổ cộng hưởng từ hạt nhân 1H-NMR (hình 1) của sản phẩm đo trên máy Bruker Advance 500MHz cho thấy sản phẩm chứa vòng thơm có kiểu thế 1,4 với các vị trí proton của vòng thơm xuất hiện lần lượt tại 6,73 ppm và 7,19 ppm, tín hiệu của nhóm –CH– ngoài vòng gắn với nhóm COOH và OH xuất hiện như vạch đơn có H = 4,89 ppm, proton gắn với nguyên tử oxi đính vào vòng thơm có H =5,65ppm với cường độ tín hiệu thấp, proton của nhóm OH ngoài vòng có tín hiệu ở 3,45ppm và proton của nhóm cacboxy (COOH) có tín hiệu thấp tại 9,39ppm.





Hình 1: Phổ 1H-NMR của axit p-hydroxymandelic

Trên phổ cộng hưởng từ 13C-NMR của sản phẩm (phụ lục 1.3) xuất hiện 8 tín hiệu các bon, trong đó có 2 tín hiệu chập đôi của 4 nguyên tử các bon trong vòng thơm, điều này càng khẳng định kiểu cấu trúc thế 1,4 của vòng thơm này. Ngoài ra 1 tín hiệu các bon xuất hiện tại 175,34 ppm được gán cho nguyên tử các bon của nhóm COOH và tín hiệu ở 72,00 ppm được quy cho nhóm –CH– ngoài vòng.

Kết quả xác định cấu trúc phổ 1H-NMR và 13C-NMR của sản phẩm p-hydroxymandelic được đưa ra ở bảng sau.

Bảng 3. Độ chuyển dịch hoá học trong phổ 1H-NMR và 13C-NMR


Phổ 13C-NMR

Phổ 1H-NMR

C (vị trí)

(ppm)

H (vị trí)

ppm

J(Hz)

C1

131,45

2 H3,5; ddd

6,72

j1=8, j2=3, j3=2

C3,5

115,73

2 H2,6; d

7,19

j=8

C4

157,79

1 H7; s

4,89




C2,6

128,80

1 H (-OH);

5,65




C7

72,00

1H (COOH)

9,39




C8

175,34

1 H (C7OH)

3,45




Cũng trên phổ 1H-NMR; 13C-NMR còn cho thấy ngoài sản phẩm chính axit p-hydroxymandelic còn có một lượng nhỏ sản phẩm phụ là axit o-hydroxymandelic. Dựa vào phổ 1H-NMR ta có thể tính được tỷ lệ giữa hai dạng là 47:3.



3.1.2. Kết quả tổng hợp axit p-hydroxyphenylaxetic

Quá trình khử hóa axit p-hydroxymandelic thành axit p-hydroxyphenylaxetic có thể được thực hiện bằng các tác nhân khử hóa khác nhau như H2 xúc tác Pd/C 5% [20 ]; CrCl3 [38] hoặc KH2PO4 và SnCl2.2H2O [7], trong các phương pháp trên xúc tác Pd/C 5% quá đắt, CrCl3 và KH2PO4 phải điều chế tại chỗ khi tiến hành phản, như vậy sử dụng SnCl2.2H2O để khử axit p-hydroxymandelic là thuận lợi hơn cả, phỏng theo tài liệu [7] chúng tôi tiến hành phản ứng khử hoá axit p-hydroxymandelic bằng SnCl2.2H2O trong môi trường axit ở 85 – 900C và sản phẩm dễ dàng tách ra khi làm lạnh hỗn hợp xuống 100C. Lọc thu lấy sản phẩm, tinh chế bằng nước thu đựơc axit p-hydroxyphenylaxetic sạch với hiệu suất 95%, có nhiệt độ nóng chảy là 1500C, phù hợp với tài liệu [7].

P

hản ứng xảy ra như sau:

Để xác định cấu trúc của sản phẩm axit p-hydroxyphenylaxetic tạo thành, chúng tôi đã tiến hành đo phổ hồng ngoại (FT-IR), phổ cộng hưởng từ hạt nhân (NMR) và phổ khối MS.

Phổ hồng ngoại được đo ở dạng viên nén với KBr (phụ lục 2.1). Từ phổ hồng ngoại các nhóm chức và liên kết được quy kết như sau: υ: 3246,82 cm-1 (O-H); 3057,83 cm-1 (C-H thơm); 2915,07 cm-1 (C-H thẳng); 1705,11cm-1 (C=O); 1603,33 cm-1 (C=C).

Phổ MS của sản phẩm ở giai đoạn này (phụ lục 2.5) cho thấy, sản phẩm có M=152 trùng với khối lượng phân tử của axit p-hydroxyphenylaxetic. Trên phổ MS còn có các mảnh phân rã với các giá trị m/z lần lượt là 107, 79 và 77 cho phép chúng ta đưa ra sơ đồ phân mảnh của axit p-hydroxyphenylaxetic như sau:

Trong phổ 13C-NMR của sản phẩm axit p-hydroxyphenylaxetic có 8 nguyên tử các bon trong đó δC=173,10 ppm của cácbon axit, 2 tín hiệu cácbon chập đôi có δ = 115,01 ppm và 130,23ppm chứng tỏ vòng benzem này bị thế 1,4, một nhóm -CH2 - xuất hiện ở 39,00 ppm. Các vị trí tín hiệu, cường độ của các nguyên tử cacbon trong phổ 13C-NMR và DEPT hoàn toàn phù hợp với công thức cấu tạo của axit p-hydrophenylaxetic. Các dữ kiện trong phổ proton (phụ lục 2.2) cũng khẳng định sản phẩm là axit p-hydrophenylaxetic. Sự quy kết các tín hiệu trên phổ 1H-NMR; 13C-NMR của sản phẩm được đưa như sau:






1H-NMR δ(ppm): H3,5 6,69 (d,J=8Hz); H2,6 7,04 (d, J=8Hz); 2H7 3,44 (s); H axit 12,15

13C-NMR δ(ppm): C1 125,10; C4 156,03; C3,5 115,01; C2,6 130,23; C7 39,00; C8 173,10

Cũng từ phổ NMR cho thấy, sản phẩm khử hóa thu được chỉ có axit p-hydroxyphenylaxetic mà không thấy xuất hiện sản phẩm phụ axit o-hydroxyphenylaxetic.

3.1.3. Kết quả tổng hợp p-hydroxyphenylaxetamit.

Theo các tài liệu tham khảo, amit có thể được tổng hợp từ nhiều nguồn khác nhau bao gồm đi từ axit tương ứng, đi từ dẫn xuất nitrin, từ p-hydroxyphenylmetylxeton (như đã nêu ở phần tổng quan) hoặc đi từ các dẫn xuất halogen [39; 41], ngoài ra amit cũng có thể được tổng hợp từ axit cacboxylic và phương pháp chung để chuyển axit sang amit là thực hiện phản ứng thế ái nhân với NH3. Tuy nhiên, do khả năng phản ứng thế ái nhân của axit kém [39] nên để cho quá trình chuyển hóa được thuận lợi, bước đầu tiên là chuyển axit thành este, trong trường hợp này, axit p-hydroxyphenylaxetic được chuyển thành dạng metyleste với methanol trong dung môi isobutylmetylxeton và xúc tác HCl ở nhiệt độ sôi, axit p-hydroxyphenylaxetic được điều chế từ axit p-hydroxymandelic không cần phải làm khô và được hoà trong isobutylmetylxeton và đun nóng đến 1050C để loại bỏ hết nước trong hỗn hợp phản ứng nhờ hỗn hợp đẳng phí của dung môi này và nước sôi ở nhiệt độ đó, tiếp theo đó làm lạnh hỗn hợp đến 100C và lượng dư metanol và xúc tác HCl được thêm vào, sản phẩm este thu được cho phản ứng trực tiếp với NH3 dư (28-30%) trong khoảng 12 – 14 giờ ở nhiệt độ phòng để thu được p-hydroxyphenylaxetamit có màu trắng ngà, T0 nóng chảy 172-1740C.

P

hản ứng xảy ra như sau:

Để xác định cấu trúc của sản phẩm phản ứng chuyển hoá axit p-hydroxyphenylaxetic, chúng tôi sử dụng các phổ như FT-IR, MS và các phổ 1H-NMR, 13C-NMR và DEPT.

Phổ IR của sản phẩm được đo ở dạng viên nén với KBr (phụ lục 3.1). Từ phổ hồng ngoại, các băng sóng hấp thụ và các liên kết được quy kết như sau: 3390,30 cm-1 (N-H), 3225,32 cm-1 (C-H thơm); 2931,23 cm-1 (C-H thẳng); 1659,55 cm-1 (C=O amit), 1613,55 cm-1 (C=C). Từ phổ hồng ngoại có thể sơ bộ nhận dạng được sự có mặt của các nhóm amin. –OH, liên kết C=C thơm trong cấu trúc của sản phẩm.

Để xem xét sản phẩm có phải là chất mong muốn không, phương pháp đơn giản nhất là đo phổ khối lượng trước khi đo phổ NMR. Phổ MS được đo trên máy LC-MS/ Agilent 6310 Ion Trap của Mỹ cho pic ion phân tử có M=151 (M + 1 = 152), điều này chứng tỏ phân tử có một nguyên tử N nên số khối lẻ, phù hợp với khối lượng phân tử của p-hydroxyphenylaxetamit.





Hình 2: Phổ khối của p-hydroxyphenylaxetamit

Phổ 13C-NMR (125 Hz) cho thấy phân tử của nó có chứa 8 nguyên tử C với 2 tín hiệu của các nguyên tử Cacbon bị chập đôi có δ = 114,94ppm và 129,94ppm chứng tỏ vòng benzen này bị thế 1,4, một tín hiệu C bậc 4 ở 172,78ppm của C=O trong amit, ngoài ra các tín hiệu các bon ở nhóm -CH2- xuất hiện ở 41,44ppm. Kết hợp với phổ DEPT (Phụ lục 3.4) có thể nhận định các tín hiệu của các nguyên tử cacbon trong phổ hoàn toàn phù hợp với công thức của p-hydroxyphenylaxetamit.





Hình 3: Phổ 1H-NMR của p-hydroxyphenylaxetamit



Hình 4: Phổ 13C-NMR của p-hydroxyphenylaxetamit

Kết quả xác định cấu trúc của p-hydroxyphenylaxetamit được đưa ra như sau :








1H-NMR δ(ppm): H3,5 6,69 (ddd, J1=8,5Hz; J2=3Hz; J3=1,5 Hz) ; H2,6 7,04 (d, J=8,5Hz); 2H7 3,24 (s); H8amit 6,79 (s); H8amit 7,33 (s); H(OH) 9,19

13C-NMR δ(ppm): C1 126,62; C4 155,81; C3,5 114,94; C2,6 129,94; C7 41,44; C8 172,87

Như vậy, các dữ kiện vật lý và dữ kiện phổ đều phù hợp với cấu trúc của p-hydroxyphenylaxetamit và sản phẩm thu được chính là chất trung gian chìa khóa quan trọng p-hydroxyphenylaxetamit.

3.1.4. Kết quả tổng hợp hỗn hợp epoxi và halohydrin của p-hydroxyphenyl axetamit

Sau khi đã điều chế được chất trung gian chìa khoá p-hydroxyphenylaxetamit, bước tiếp theo chúng tôi tiến hành tổng hợp atenolol. Bước đầu tiên trong quá trình này là thực hiện phản ứng giữa p-hydroxyphenylaxetamit với epiclohydrin. Theo các tài liệu tham khảo được, phản ứng giữa các chất này có thể sử dụng kiềm hoặc xúc tác chuyển pha. Trước hết chúng tôi tiến hành phản ứng tổng hợp hỗn hợp epoxi và halohydrin của p-hydroxyphenylaxetamit trong môi trường kiềm (dung dịch NaOH) theo tỷ lệ về khối lượng giữa p-hydroxyphenylaxetamit : epiclohydrin là 1:3. Phản ứng được khuấy trộn trong 5 ngày ở nhiệt độ phòng. Lọc thu sản phẩm và xác định khả năng chuyển hóa và tỷ lệ giữa hai dạng epoxi : halohydrin bằng (HPLC). Kết quả cho thấy, trong điều kiện nghiên cứu tỷ lệ giữa hai dạng là 2:1 và hiệu suất của phản ứng là 94%. Còn theo tài liệu [8] tỷ lệ hai dạng là 3:1 và hiệu suất 93 % (tính theo HPLC).

Tiếp theo, chúng tôi nghiên cứu phản ứng tổng hợp hai dạng epoxi và halohydrin nêu trên có sử dụng xúc tác chuyển pha N,N,N-trimetylamoniclorua ở 900C trong một giờ với tỷ lệ giữa p-hydroxylphenylaxetamit : epiclohydrin là 1:4. Sau khi thu sản phẩm, xác định khả năng chuyển hóa tỷ lệ và tỷ lệ giữa hai dạng epoxi và halohydrin bằng HPLC (của LC-MS). Đối với xúc tác chuyển pha N,N,N-trimetylamoniclorua, hiệu suất đạt 84 % và tỷ lệ giữa hai dạng là 4:1, còn theo tài liệu [50] thì tỷ lệ này là 4:1

Đối với phản ứng này, khi sử dụng xúc tác chuyển pha, hiệu suất phản ứng cũng khá cao 84% so với 94% của phản ứng sử dụng kiềm. Tuy nhiên, thời gian phản ứng chỉ còn là một giờ thay vì 5 ngày. Như vậy, hướng sử dụng xúc tác chuyển pha có thể ứng dụng ở quy mô lớn trong thực tiễn và khi sử dụng xúc tác này, nhiệt độ của phản ứng cũng đóng vai trò rất quan trọng đối với khả năng chuyển hóa. Để xác định nhiệt độ thích hợp nhất cho phản ứng này, các thí nghiệm nghiên cứu được tiến hành với các điều kiện như nhau nhưng ở các nhiệt độ 700C, 800C, 900C, 1000C và không khống chế nhiệt độ. Kêt quả nghiên cứu được chỉ ra ở bảng sau:



Bảng 4: Hiệu suất của phản ứng và tỷ lệ giữa hai dạng epoxi và halohydrin

STT

Nhiệt độ (0C)

Tỷ lệ 2 dạng

nepoxi

nhalohydrin

ntổng

Hiệu suất(%)

1

70

1 : 3,35

0,0051

0,0057

0,0108

45,4

2

80

2,04 : 1

0,0131

0,0056

0,0189

79,4

3

90

3,9 : 1

0,0166

0,0036

0,0202

84,9

4

100

4,09 : 1

0,0160

0,0033

0,0193

81,1

5

Không khống chế













30

Kết quả ở bảng 2 cho thấy, phản ứng giữa p-hydroxyphenylaxetamit và epiclohydrin với xúc tác N,N,N-trimetylamoniclorua cho hiệu suất tốt nhất 84,9% với tỷ lệ hai dạng sấp xỉ 4:1. Khi không khống chế nhiệt độ phản ứng tạo ra rất nhiều sản phẩm phụ và hiệu suất chỉ đạt 30%.

Cuối cùng, chúng tôi tiến hành thử nghiệm điều chế hỗn hợp epoxi và halohydrin của p-hydroxyphenylaxetamit bằng hỗn hợp kiềm NaOH và xúc tác chuyển pha N,N,N-trimetylamoniclorua. Các phản ứng được thực hiện ở các nhiệt độ từ 40- 800 C trong một giờ. Sau khi xác định khả năng chuyển hóa và tỷ lệ giữa hai dạng, chúng tôi thấy phản ứng sử dụng hỗn hợp kiềm và xúc tác chuyển pha (xem phần phụ lục) cho hiệu suất cao hơn (91% so với 85%) xúc tác chuyển pha và trong cùng điều kiện nghiên cứu.

Trên phổ LC-MS của tất cả các mẫu khảo sát chỉ có hai pic lớn của sản phẩm cần quan tâm có các thời gian lưu tương ứng là tR1 và tR2 lần lượt là 10,9 và 12,4 phút tương ứng với các số khối là 207 và 243 hoàn toàn trùng khớp với số khối của hai dạng epoxi và halohydrin. Ngoài ra, trong tất cả các phổ LC-MS đều xuất hiện một pic có tR = 12,9 phút tương ứng với số khối là 358 là sản phẩm phản ứng thế SN2 2 lần, các kết quả đo LC-MS cũng cho thấy sản phẩm phụ không mong muốn có hàm lượng không đáng kể (chiếm từ 1-6,5%). Từ đó chúng tôi dự đoán sản phẩm chính và sản phẩm phụ của phản ứng này như sau:

Về mặt cơ chế, theo các tài liệu chúng tôi tham khảo được phản ứng xảy ra theo cơ chế SN2. Tốc độ và hướng của phản ứng cùng thay đổi tùy theo xúc tác được sử dụng. Do đặc điểm cấu trúc của epiclohydrin có chứa vòng epoxi không bền, không đối xứng và một liên kết phân cực C-Cl nên đây là chất chứa nhiều trung tâm cho phản ứng nucleophin, tuy nhiên phản ứng thế SN2 chủ yếu xảy ra ở các vị trí 1 và 3 và như vậy phản ứng chỉ có thể xảy ra theo hai hướng như sau :

Hướng thứ nhất :

Trong môi trường kiềm, p-hydroxyphenylaxetamit sẽ chuyển thành dạng phenolat của nó chính là tác nhân nucleoplin tấn công vào liên kết C-Cl để tạo ra dạng epoxi:





Hướng thứ hai :

Tác nhân nucleoplin tấn công vào liên kết -CH2-O- của vòng epoxi không bền để tạo thành dạng halohydrin, tiếp theo đó dạng này đóng vòng trở lại để tạo ra dạng epoxi như sau :

Về mặt lý thuyết, phản ứng này có thể tạo ra hỗn hợp gồm 4 dạng: epoxi, halohydrin, dạng diol và dạng amit đối xứng (M=358). Tuy nhiên ,trong các điều kiện nghiên cứu phản ứng này, chúng tôi chỉ thấy có hỗn hợp hai dạng epoxi và halohydrin và sản phẩm phụ có M=358 là dạng amit đối xứng như dự đoán của chúng tôi. Từ các kết quả này, chúng tôi đưa ra sơ đồ chung cho các phản ứng này như sau :







Hình 8: Phổ LC-MS của sản phẩm khi sử dụng hỗn hợp xúc tác


tải về 0.51 Mb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5   6   7




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương