Synthesis of design and construction practices


Table 13.  Estimated Maintenance Schedule for Different ESAL Levels



tải về 1.81 Mb.
Chế độ xem pdf
trang36/42
Chuyển đổi dữ liệu13.04.2022
Kích1.81 Mb.
#51624
1   ...   32   33   34   35   36   37   38   39   ...   42
09-cr2
[123doc] - phat-trien-nguon-nhan-luc-cua-cong-ty-co-phan-misa-doc
Table 13.  Estimated Maintenance Schedule for Different ESAL Levels 

Flexible and Composite with CTB 

ESALs ~33M 

~67M 

~135M 


Functional Mill and Replace 

21 


12 

Structural Mill and Replace 



35 

22 


13 

Major Rehabilitation 

47 

32 


19 

Functional Mill and Replace 

44 


29 

Reconstruction - 

35 


Functional Mill and Replace 



41 

Structural Mill and Replace 



47 



Rigid (CRCP) 

Concrete Pavement Maintenance 

18 

10 


Concrete Pavement Restoration and AC Overlay 

33 

20 


12 

Functional Mill and Replace 

45 

30 


18 

Concrete Pavement Restoration and AC Overlay 

40 


25 

Reconstruction - 

35 


Concrete Pavement Maintenance 



40 

Concrete Pavement Restoration and AC Overlay 



47 



Composite with CRCP Base 

Functional Mill and Replace 

10 

10 


10 

Functional Mill and Replace 

20 

20 


20 

Functional Mill and Replace 

30 

30 


30 

Functional Mill and Replace 

40 

40 


40 

Salvage Value 

50 

50 


50 

                  Note:  All maintenance operations defined in accordance with VDOT (2002).

  

 

$0.0



$0.5

$1.0


$1.5

$2.0


$2.5

$3.0


$3.5

$4.0


$4.5

0

20



40

60

80



100

120


140

160


P

re

s

e

nt

  Wor

th 

 (

m

il

lion doll

a

rs

)

ESALs (millions)

Flexible


Composite with CTB

Rigid


Composite with CRCP

 

Figure 14.  PW Computation of Pavement Alternatives at Different Design ESALs 




 34

FINDINGS 

 

The main findings of this study concerning the technical and economic evaluations of 



composite pavement systems to be used during the PTS process are the following: 

 

•  According to the literature, countries (e.g., the U.K., Spain) that have used composite 



pavement systems in their main road network have had a positive experience in terms 

of functional and structural performance.  The review suggests that this type of 

pavement can also perform satisfactorily in Virginia.  Furthermore, good performance 

could also be expected from existing CRCP overlaid with high-quality HMA surfaces 

if the overlay is applied when the existing pavement is still in relatively good 

condition. 

 

•  At the technical level, composite pavements mitigate various structural and functional 



problems that typical flexible or rigid pavements tend to present.  The use of rigid 

bases minimize (or eliminate) the development of distresses such as HMA fatigue 

cracking, subgrade rutting, PCC erosion, and PCC loss of friction, among others.   

 

•  However, other types of distresses such as reflective cracking and rutting within the 



HMA layer need to be considered because they affect composite pavement systems 

more than the traditional pavement structures.  Premium HMA surfaces and/or 

reflective cracking mitigation techniques may be required to mitigate these potential 

problems.  The minimum thickness of the HMA layers to mitigate reflective cracking 

range from 100 to 200 mm (4 to 8 in).  One of the countries with more experience 

concerning composite pavements is the U.K., which uses an HMA layer thickness of 

175 mm (7 in). 

 

•  The use of a high-stiffness base layer under the HMA surface course provided the 



following benefits: 

 

─  Deflections at the HMA surface are significantly reduced as the stiffness of the 



base layer increases.   

─  Fatigue (bottom-up) cracking in the HMA, due to high tensile strain at the bottom 

of the layer, is greatly minimized; in some cases the number of repetitions to 

fatigue cracking was determined to be unlimited. 

─  Permanent deformations (rutting) due to vertical compressive strains and stresses 

in the unbound subbase and, most importantly, subgrade layer are significantly 

minimized.   

 

•  On the other hand, permanent deformations within the HMA layer tend to increase as 



the stiffness of the base increases; however, the use of rut resistant mixes such as 

SMA may reduce this effect.   

 

•  A deterministic LCCA (considering only agency costs) showed that of the composite 



pavement with CTB can cost less than the traditional flexible and rigid pavement 

alternatives.  Comparing the composite with CTB to the flexible pavement, the 




 35

composite alternative requires a lower HMA thickness due to the high support 

provided by the rigid base. 

 

•  A sensitivity analysis of the agency costs over the life-cycle of the pavements, 



suggests that CRCP base composite pavements can become a cost-effective 

alternative for very high-traffic high-priority highways (carrying more than 

approximately 140 million ESALs). 

 

 



CONCLUSIONS 

 

Composite pavement systems can become a cost-effective pavement alternative during 



the PTS process for high-volume high-priority highways because of the functional, structural, 

and economic benefits they can provide during their service life.  These types of structures can 

provide long-life pavement that offers good serviceability levels and rapid, cost-effective 

maintenance operations.  While likely to be more suited for new construction, composite 

pavements are still relevant for VDOT in that they should be considered for lane addition 

projects (such as truck climbing lanes) that are expected to carry high traffic volumes and heavy 

truck loads. 

 

The feasibility-level LCCA suggests that the use of a composite pavement with a CTB 



can be a cost-effective alternative for a typical Interstate traffic (e.g., 35 million ESALs).  

Alternatively, composite pavement with CRCP base may become more cost-effective for very 

high volumes of traffic (approximately 140 million ESALs and greater). 

 

Finally, it is important to note that the maintenance schedule for the CRCP base 



composite pavements analyzed was determined based on the literature review, and its 

applicability to Virginia highways should be verified.  The costs of reflective cracking mitigation 

actions were not included in the feasibility analysis. 

 

 




tải về 1.81 Mb.

Chia sẻ với bạn bè của bạn:
1   ...   32   33   34   35   36   37   38   39   ...   42




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương