Rf and if digitization in Radio Receivers: Theory, Concepts, and Examples



tải về 0.99 Mb.
Chế độ xem pdf
trang20/37
Chuyển đổi dữ liệu27.02.2022
Kích0.99 Mb.
#50663
1   ...   16   17   18   19   20   21   22   23   ...   37
baseband signal
Chương-3, tham-số-hiệu-năng, OFDM vs OFDMA
3.1  Processors  

Many different processors are available to provide digital signal processing. These processors 

vary substantially in speed of operation, physical size, and cost. Speed is usually a critical 

requirement in selecting a processor. Other factors including dynamic range, arithmetic 

precision, cost, and size are also important considerations when choosing a processor.  

A common method used to increase total processing speed beyond that of a single processor is to 

employ multiple processors operating in parallel. Assuming a given processor, by putting more 

and more of these processors together and operating them in parallel, higher and higher 

processing speeds can be achieved. This, of course, also increases power consumption, size, and 

cost. 


Many radio receiver applications require processors with small physical size and relatively low 

cost. For these cases, single chip processors are the preferred choice. Single chip processors can 

be general purpose microprocessors (such as the Intel 80486), digital signal processors (such as 

the Texas Instruments TMS320C40), or specialized integrated circuits for dedicated processing 

tasks (such as the Harris HSP50016 Digital Downconverter). Some specialized radio receiver 

applications may not be bound by stringent physical size and cost limitations. Therefore, 

processors of all types are considered in this report, ranging from single chip general purpose 

microprocessors to supercomputers.  

Computations in digital signal processing can be performed using fixed-point arithmetic or 

floating-point arithmetic, although many of the computations require floating-point arithmetic. 

The advantage of floating-point arithmetic over fixed-point arithmetic is that it permits the use of 

numbers with a much greater dynamic range. This is important in many digital signal-processing 

operations.  



 

27 


In fixed-point arithmetic, the position of the decimal point in the register where each operand is 

stored always is assumed to be the same. In floating-point arithmetic, each operand is 

represented by a number stored in a register representing a fraction or integer. A number stored 

in a second register specifies the position of the decimal point of the number stored in the first 

register. Some processors do not have floating-point hardware and require floating-point 

operation to be implemented in software. Software implementation of floating-point arithmetic is 

typically much slower than hardware implementation.  

Because floating-point operations are so important in digital signal processing, the speed of 

processors is often specified in terms of millions of floating-point operations per second 

(MFLOPS). This parameter allows comparison of the processing speed of different processors 

and also allows determination of the time required to execute certain algorithms.  

Many different benchmarks (such as the SPEC benchmarks, Whetstone, Dhrystone, and 

Linpack) are used to compare speeds between processors. Each benchmark provides a number 

indicating the relative speed of processing based on testing varying tasks. Results from the 

application of a benchmark to different processors can be compared. However, results between 

different benchmarks, in general, should not be compared. While these benchmarks are useful for 

comparing processor performance, the parameter chosen to compare processing speeds between 

processors in this report is the theoretical peak MFLOPS. This parameter was chosen due to its 

ease of availability for virtually all floating-point processors, its lack of dependence on specific 

benchmarking algorithms, and its relevancy to dedicated applications used in implementation of 

a radio receiver. The theoretical peak MFLOPS parameter gives the maximum possible speed of 

performance for the processor. It is found by computing the number of floating-point additions 

and multiplications (using the processor’s full precision) that can be performed during a given 

time interval [25].  

Some examples of the processing speed of various types of processors ranging from single chip 

processors to supercomputers are presented in Table 3. This table only gives a sampling of the 

range of capabilities that exist in digital signal processing. Many other processors, with varying 

capabilities, either exist or have been proposed. In addition, new developments with increasing 

capabilities are announced all the time. An extensive listing of processing speeds for many 

different computers is found in [25].  

In certain situations, especially in the high-throughput case, overall processing performance is 

not limited by the processor speed but by the maximum data transfer rates of the peripheral 

components such as memory or I/O (input/output) ports. The inclusion of these factors in 

platform evaluation should not be ignored when choosing a processor.  

Table 3. Examples of Processing Technology 

Processing 

Speed* 

Number of 

Processors 

Platform 

Manufacturer and Model 

50 MFLOPS 

DSP Chip 



Texas Instruments TMS320C40 


 

28 


Processing 

Speed* 


Number of 

Processors 

Platform 

Manufacturer and Model 

120 MFLOPS 

DSP Chip 



Analog Devices ADSP-21060/62 

400 MFLOPS 

VME Board 



Pentek 4285 

800 MFLOPS 

16 

Computer 



Workstation 

SUN Sparc 2000 

6.48 GFLOPS 

Supercomputer 



Convex C4/XA-4 

32 GFLOPS 

Supercomputer 



Hitachi S-3800/480 

184 GFLOPS 

3680 

Massively 



Parallel Computer 

Intel Paragon XPS140 

236 GFLOPS 

140 


Massively 

Parallel Computer 

National Aerospace Laboratory 

Numerical Wind Tunnel (Japan) 

*  Theoretical peak processing speed.  


tải về 0.99 Mb.

Chia sẻ với bạn bè của bạn:
1   ...   16   17   18   19   20   21   22   23   ...   37




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương