Dinh dưỡng của vi sinh vật



tải về 0.84 Mb.
trang3/9
Chuyển đổi dữ liệu18.05.2018
Kích0.84 Mb.
#38555
1   2   3   4   5   6   7   8   9

4) Nhân tố sinh trưởng


      Nhân tố sinh trưởng (growth factor) là những hợp chất hữu cơ mà có những vi sinh vật cần thiết để sinh trưởng tuy với số lượng rất nhỏ và không tự tổng hợp đủ so với nhu cầu.

      Các vi sinh vật khác nhau có những yêu cầu không giống nhau về chủng loại và liều lượng của các nhân tố sinh trưởng. Sau đây là một số ví dụ (bảng 13.10).



Bảng 13.10: Các nhân tố sinh trưởng cần thiết dối với một số loài vi sinh vật

Vi sinh vật

Chất sinh trưởng

Nhu cầu / ml

Acetobacter suboxydans 

Clostridium acetobutylicum

Streptococcus pneumonia

Leuconostoc mesenteroides

Staphylococcus aureus

Corynebacterium diphtheria

Clostridium tetani

Lactobacillus arabinosus 
 
 

Streptococcus faecalis 
 
 

Lactobacillus delbruckii  
 

Lactobacillus casei

APAB,    Acid nicotinic

APAB


choline

pyridoxal

thiamin

b-alanin


uracil

acid nicotinic

acid pantothenic

methionine

acid folic

arginine


tyrosine

thymonucleoside

biotin

ephedrin


0-10 ng

3 mg


0,15 ng

6 mg


0,025 mg

0,5ng


1,5 mg

0~4 mg


0,1 mg

0,02 mg


1,0 mg

0,02 mg


50 mg

8 mg


0-2 mg

1 ng


Chú thích: 1 mg= 10-6g; 1ng= 10-9g

      Vi sinh vật tự dưỡng và một số vi sinh vật dị dưỡng (như Escherichia coli) thậm chí có thể sinh trưởng mà không cần bất kỳ nhân tố sinh trưởng nào. Mặt khác, cùng một loài vi sinh vật nhưng nhu cầu đối với nhân tố sinh trưởng cũng thay đổi tuỳ theo điều kiện môi trường. Ví dụ Mucor rouxii khi sinh trưởng trong điều kiện kỵ khí thì cần thiamin (B1) và biotin (H), nhưng trong điều kiện hiếu khí thì lại tự tổng hợp được các vitamin này. Có trường hợp chưa giải thích được bản chất của nhu cầu về nhân tố sinh trưởng ở một số loài vi sinh vật. Thông thường bổ sung vào môi trường các chất hữu cơ như cao nấm men, cao thịt, dịch đun động thực vật (nhộng, giá đỗ…) là có thể đáp ứng được nhu cầu về nhân tố sinh trưởng.

      Căn cứ vào sự khác nhau về cấu trúc hoá học và chức năng sinh lý của các nhân tố sinh trưởng người ta chia nhân tố sinh trưởng thành các nhóm vitamin, aminoacid, purine và pyrimidine. Vitamin là nhân tố sinh trưởng được tìm thấy bản chất hoá học sớm nhất. Hiện nay người ta đã phát hiện được nhiều loại vitamin có tác dụng là nhân tố sinh trưởng. Một số vi sinh vật có thể tự tổng hợp được vitamin, nhưng nhiều loại khác lại cần được cung cấp vitamin trong môi trường dinh dưỡng thì mới sinh trưởng được. Vitamin chủ yếu là coenzyme hay cofactor của các enzyme tham gia vào quá trình trao đổi chất. Một số vi sinh vật không tự tổng hợp được những aminoacid nào đó, cần bổ sung vào môi trường các aminoacid đó hay bổ sung peptide chuỗi ngắn. Chẳng hạn vi khuẩn Leuconostoc mesenteroides cần tới 17 loại aminoacid mới sinh trưởng đươc. Một số vi khuẩn cần cung cấp D-alanin để tổng hợp thành tế bào. Purine và pyrimidine chủ yếu được dùng làm coenzyme hay cofactor của các enzyme cần thiết cho quá trình tổng hợp nucleoside, nucleotide và acid nucleic.

Bảng 13.11: Chức năng của một số vitamin thông thường đối với vi sinh vật


Vitamin

Chức năng

Ví dụ về các vi sinh vật cần cung cấp

 
Biotin (H)

-Carboxyl hóa (cố định CO2)

-Trao đổi chất một carbon



Leuconostoc mesenteroides (B)

Saccharomyces cerevisiae (F)

Ochromonas malhamensis (A)

Acanthammoeba castellanii (P)

 
Vitamin B12

-Sắp xếp lại phân tử

-Nhóm mang methyl trong trao đổi chất một carbon



Lactobacillus spp. (B)

Euglena gracilis (A)

Tảo silic và nhiều vi tảo khác (A)



Acanthammoeba castellanii (P)

Acid folic

-Trao đổi chất một carbon

Enterococcus faecalis (B)

Tetrahymena pyriformis (P)

Acid lipoic

-Chuyển nhóm acyl

Lactobacillus casei (B)

Tetrahymena spp. (P)

Acid pantotenic

-Tiền thể của CoA (oxy hóa pyruvat, trao đổi axit béo)

Proteus morganii (B)

Hanseniaspora spp. (F)

Paramecium spp. (P)

Pyridoxin   (B6)

-Trao đổi acid amin

Lactobacillus spp. (B)

Tetrahymena pyriformis (P)

 
Niacin

-Tiền thể của NAD, NADP

Brucella abortus (B)

Haemophilus influenza (B)

Blastocladia pringsheimii (F)

Crithidia fasciculata (P)

 
Riboflavin (B2)

-Tiền thể của FAD, FMN

Caulobacter vibrioides (B)

Dictyostelium spp. (F)

Tetrahymena pyriformis (P)

Bacillus anthracis (B)

 
Thiamin (B1)

-Chuyển nhóm aldehyd (khử carboxyl pyruvat, oxy hóa acid α-keto)

Phycomyces blakesleeanus (F)

Ochromonas malhamensis (A)

Colpidium campylum (P)

Chú thích: B-Vi khuẩn; F-Vi nấm; A-Vi tảo; P-Động vật nguyên sinh 

5) Nước

      Nước là thành phần không thể thiếu để vi sinh vật có thể sinh trưởng. Chức năng sinh lý của nước trong tế bào là:

      - Hoà tan và chuyển vận các chất, hỗ trợ cho việc hấp thu chất dinh dưỡng, giải phóng các sản phẩm trao đổi chất.

      - Tham gia vào hàng loạt các phản ứng hóa học trong tế bào.

      - Duy trì cấu hình thiên nhiên ổn định của các đại phân tử như protein, acid nucleic...

      - Là thể dẫn nhiệt tốt, hấp thu tốt nhiệt lượng sinh ra trong quá trình trao đổi chất và khuếch tán kịp thời ra bên ngoài để duy trì sự ổn định của nhiệt độ bên trong tế bào.

      - Duy trì hình thái bình thường của tế bào.

      - Thông qua quá trình thuỷ phân hay khử nước để khống chế kết cấu của tế bào (enzyme, vi ống, tiên mao...) và sự tháo lắp ở virút.

      Tính hữu hiệu của nước đối với sự sinh trưởng của vi sinh vật thường được biểu thị bằng độ hoạt động (hoạt độ) của nước (water activity, aw). Đó là tỷ lệ giữa áp lực hơi nước của dung dịch trong những điều kiện nhiệt độ và áp lực nhất định với áp lực của hơi nước thuần khiết trong cùng những điều kiện như vậy:

                  aw = p w / pw0

      Ở đây Pw là áp lực hơi nước của dung dịch, còn aw0 là áp lực của hơi nước thuần khiết. Pw0 của nước thuần khiết là 1.0. Dung dịch càng chứa nhiều dung chất (chất hoà tan) thì aw càng nhỏ. Vi sinh vật thường sinh trưởng trong điều kiện có aw trong khoảng 0,6-0,99. Đối với một số loài vi sinh vật khi aw quá thấp thì tốc độ sinh trưởng và tổng sinh khối giảm. Các vi sinh vật khác nhau có aw thích hợp không giống nhau (bảng 13.12)

Bảng 13.12: aw thích hợp nhất cho sinh trưởng ở một số nhóm vi sinh vật 
 


Vi sinh vật

aw

Vi khuẩn nói chung 

Nấm men


Nấm sợi  

Vi khuẩn ưa mặn  

Vi nấm ưa mặn    

Nấm men ưa áp suất thẩm thấu cao



0,91

0,88


0,80

0,76


0,65

0,60


      Nhìn chung aw thích hợp nhất cho sự sinh trưởng của vi khuẩn cao hơn của nấm men và nấm sợi. Vi sinh vật ưa mặn có aw thích hợp nhất cho sự sinh trưởng là khá thấp.

      Phần nước có thể tham gia vào các quá trình trao đổi chất của vi sinh vật được gọi là nước tự do. Phần lớn nước tồn tại trong tế bào vi sinh vật là nước tự do. Phần nước liên kết với các hợp chất hữu cơ cao phân tử trong tế bào được gọi là nước liên kết. Nước liên kết mất đi khả năng hoà tan và lưu động.


13.1.4. Khái niệm về sự sinh trưởng trong điều kiện hạn chế các chất dinh dưỡng


        Ở môi trường nuôi cấy lắc trong phòng thí nghiệm, khi tất cả các chất dinh dưỡng được cung cấp cho sự sinh trưởng của vi sinh vật đã được thiết kế tối ưu thì sự dư thừa xảy ra vào lúc đầu và các tế bào sinh trưởng theo logarit với tốc độ sinh trưởng là lớn nhất. Tuy nhiên, trong mỗi hệ thống môi trường và kỹ thuật nuôi cấy, sự sinh trưởng của vi sinh vật không thể tiếp diễn mãi mà không bị giới hạn trong một khoảng thời gian dài. Một tính toán đơn giản để chứng minh nhận định này là: sau 2 ngày sinh trưởng theo logarit, một tế bào vi sinh vật cứ 20 phút lại nhân đôi một lần sẽ tạo ra xấp xỉ 2 x 1043 tế bào. Giả sử khối lượng trung bình của mỗi tế bào là 10-12 g thì toàn sinh khối tế bào trên sẽ có khối lượng gấp gần 400 lần khối lượng của quả đất. Vì vậy, trong mỗi một thể tích nuôi cấy, sự sinh trưởng luôn luôn sớm bị giới hạn do sự cạn kiệt của một hoặc vài chất dinh dưỡng.

      Thuật ngữ “các chất dinh dưỡng hạn chế” được sử dụng với rất nhiều ý nghĩa, và thường vẫn bị nhầm lẫn. Các chất dinh dưỡng hạn chế có khả năng ảnh hưởng đến sự sinh trưởng trong các môi trường nuôi cấy vi sinh vật theo hai cách riêng biệt: hóa học và và động học. Sự hạn chế hóa học được định nghĩa là khối lượng lớn nhất sinh khối có thể được tạo ra trong điều kiện giới hạn các chất dinh dưỡng. “Nguyên lý Liebig” bắt nguồn từ các nghiên cứu về sự màu mỡ trong nông nghiệp của Justus von Liebig vào năm 1840. Trong nghiên cứu này ông tìm ra rằng hàm lượng của một chất dinh dưỡng nào đó sẽ quyết định đến năng suất mùa màng, miễn là tất cả các chất dinh dưỡng khác đã có mặt một cách dư thừa (phương trình 1). Giới hạn động học xuất hiện khi nồng độ các chất dinh dưỡng là thấp (trong phạm vi từ miligram tới microgram trong mỗi lit), sự hạn chế các chất dinh dưỡng sẽ điều khiển tốc độ sinh trưởng riêng của tế bào (μ). Điều khiển động học về tốc độ sinh trưởng thường kéo theo các động lực bão hòa và phương trình Monod (phương trình 2) được sử dụng để mô tả mối quan hệ giữa nồng độ của các chất dinh dưỡng đối với tốc độ sinh trưởng riêng của tế bào (μ).

X = X0  +  ( S0  - S)  x  YX/S  (1)

μ = μmax  x x s / (KS + S)  (2)

      Trong đó S0 là nồng độ ban đầu và s là nồng độ cuối cùng của các chất dinh dưỡng bị hạn chế S; X(X0) là nồng độ sinh khối (ban đầu);  là sản lượng sinh khối thu được đối với chất dinh dưỡng S, μmax là tốc độ sinh trưởng riêng lớn nhất, và KS là hằng số ái lực cơ chất Monod.

      Điều này thể hiện rõ trong hình 13.2 đối với sự sinh trưởng trong hệ thống nuôi cấy kín. Các tế bào ban đầu sinh trưởng không giới hạn cho đến khi sự tiêu thụ các chất dinh dưỡng hạn chế bị hết dần, dẫn đến tốc độ sinh trưởng suy giảm dần, sau đó tốc độ sinh trưởng ngừng hẳn. Đó là lúc đạt đến nồng độ cuối cùng của sinh khối. Trong nuôi cấy liên tục, người bổ sung môi trường một cách liên tục và một lượng môi trường dư thừa được loại bỏ. Tốc độ bổ sung thêm vào của các chất dinh dưỡng bị hạn chế sẽ điều khiển đồng thời cả μ và nồng độ sinh khối trong môi trường nuôi cấy (Pirt, 1975; Kovarova và Egli, 1998).





Hình 13.2: Động học của sự giới hạn sinh trưởng của vi sinh vật trong nuôi cấy đóng do giới hạn nồng độ của chất dinh dưỡng (cơ chất) S. S0 là nồng độ cơ chất ban đầu, s là nồng độ thực của cơ chất, X là nồng độ sinh khối; X0: nồng độ sinh khối ban đầu; Y: sản lượng sinh khối thu được đối với cơ chất S.

      Trong thực nghiệm, người ta có thể nuôi cấy các tế bào trong các điều kiện đã được biết rõ, nhờ đó các chất dinh dưỡng hạn chế sẽ được xác định. Đối với việc nuôi cấy các vi sinh vật dị dưỡng để nghiên cứu và tạo ra các sản phẩm sinh khối, môi trường được thiết kế phổ biến với nguồn carbon và năng lượng giới hạn, tất cả các chất dinh dưỡng khác được cung cấp dư thừa. Tuy nhiên, trong quá trình công nghệ sinh học, sự giới hạn bởi các chất dinh dưỡng chứ không phải nguồn carbon giữ chức năng điều khiển các trạng thái sinh lý và quá trình trao đổi chất của vi sinh vật. Sự hạn chế các chất dinh dưỡng nào đó thường kích thích hoặc tăng cường sự tạo thành rất nhiều các sản phẩm trao đổi chất và các enzyme của vi sinh vật. Ví dụ, năng suất sẽ được tăng lên trong quá trình lên men tạo chất kháng sinh do sinh trưởng trong môi trường hạn chế photphat, sự sản xuất acid citric trong môi trường có sự hạn chế Fe-, Mn-, hoặc Zn. Còn sự sinh tổng hợp của NAD là được thực hiện trong điều kiện hạn chế Zn-Mn. Việc tích lũy các nguyên liệu dự trữ nội bào PHB hoặc PHA (chất dẻo sinh học-bioplastic) sẽ bị giới hạn bởi nguồn cung cấp hợp chất giàu nitrogen.

       Rõ ràng là sự sinh trưởng của vi sinh vật được điều khiển thường xuyên không phải chỉ bởi một chất dinh dưỡng mà bởi sự kết hợp của hai hay nhiều chất dinh dưỡng đồng thời (Kovarova và Egli, 1998).



tải về 0.84 Mb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5   6   7   8   9




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương