Chương TỔng quan vật liệu mao quản trung bình (mqtb) trật tự 1 Giới thiệu chung


b. Ảnh hưởng của thời gian phản ứng



tải về 458.86 Kb.
trang5/5
Chuyển đổi dữ liệu18.07.2016
Kích458.86 Kb.
#1891
1   2   3   4   5

b. Ảnh hưởng của thời gian phản ứng

Sau khi khảo sát ảnh hưởng của nhiệt độ phản ứng trên Pt/Al-SBA-16-0.35, chúng tôi khảo sát ảnh hưởng của thời gian phản ứng trên xúc tác này ở 5200C do ở nhiệt độ này độ chuyển hóa và độ chọn lọc tương đối của sản phẩm thơm là cao nhất. Kết quả được trình bày trên bảng 3.6.




Bảng 3.6: Kết quả phân tích sản phẩm phản ứng thơm hóa n-hexan trên xúc tác Pt/Al-SBA-16-0.35 ở 5200C



Thời gian (phút)

15

55

95

Thành phần sản phẩm (%)

Benzen

14.9

15.8

10.0

Toluen

42.5

55.6

37.2

n-hexan

15.6

12.4

19.8

Các sản phẩm khác

27.1

16.2

33.0

Phản ứng thơm hóa n-hexan trên Pt/Al-SBA-16-0.35 cho sản phẩm chính là benzen và toluen. Khi kéo dài thời gian phản ứng, thành phần sản phẩm thay đổi, % benzen giảm dần và % toluen tăng dần. Sự hình thành nên sản phẩm toluen có thể từ quá trình crackinh bất đối xứng lưỡng phân tử n-hexan trên tâm axit, sau đó là sự vòng hóa và thơm hóa. Sự ankyl hóa benzen do trong quá trình phản ứng sinh ra anken, anken này chuyển thành cacbocation trên tâm axit rồi kết hợp với benzen tạo thành ankyl benzen theo cơ chế thế electrophin (SE) rồi bị crackinh cũng sinh ra toluen, do đó hàm lượng tương đối của benzen so với toluen giảm.

Nhu cầu về benzen trong công nghiệp hóa dầu lớn hơn nhu cầu về toluen, do đó, sản phẩm mong muốn của phản ứng này là benzen. Vì vậy, không nên thực hiện phản ứng trong thời gian quá lâu, hoặc có thể tăng tốc độ dòng nguyên liệu để tăng lượng benzen trong sản phẩm.

Khi thời gian phản ứng kéo dài đến phút 95, độ chuyển hóa chỉ giảm nhẹ, chứng tỏ xúc tác có hoạt tính khá bền, mặc dù phản ứng được thực hiện ở nhiệt độ cao và sự tạo cốc là không thể tránh khỏi.



KẾT LUẬN

1. Đã tổng hợp thành công vật liệu SBA-16 và SBA-16 biến tính bởi SO42-/ZrO2 bằng hai con đường: tổng hợp theo hai bước và tổng hợp trực tiếp; tổng hợp thành công vật liệu Al-SBA-16 theo phương pháp tổng hợp trực tiếp đi từ nguồn nhôm ankoxit.

2. Đặc trưng vật liệu SBA-16 biến tính được kiểm tra bằng các phương pháp vật lý hiện đại: phân tích nhiệt trọng lượng, XRD góc lớn và góc nhỏ, phương pháp SEM, TEM, phổ hồng ngoại, hấp phụ-giải hấp phụ N2.

- Kết quả phân tích nhiệt cho thấy nhiệt độ nung 550-6000C là phù hợp để loại bỏ hoàn toàn chất HĐBM ra khỏi cấu trúc của vật liệu SBA-16.

- Các vật liệu vẫn giữ được cấu trúc đặc trưng của SBA-16 khi được biến tính bằng SO42-/ZrO2 theo cả hai phương pháp, trong đó vật liệu tổng hợp bằng phương pháp trực tiếp có độ trật tự cao hơn, kích thước hạt nhỏ và đồng đều hơn vật liệu tổng hợp theo phương pháp tổng hợp hai bước. Zr đã đi vào trong mạng hoặc đã được phân tán đồng đều trên SBA-16.

- Khi tỉ lệ Al/Si tăng từ 0.15 đến 0.35, các vật liệu Al-SBA-16 vẫn giữ được cấu trúc đặt trưng của SBA-16. Cấu trúc SBA-16 ít thay đổi khi tăng hàm lượng Al trong mẫu.

- SZ-SBA-16 và Al-SBA-16-0.35 là các vật liệu có cấu trúc ít bị thay đổi so với SBA-16 thông thường và có diện tích bề mặt riêng lớn (401 và 832 m2/g, tương ứng), thành mao quản dày, kích thước mao quản đồng đều, thích hợp làm vật liệu xúc tác.

3. Nghiên cứu sơ bộ chiều hướng tạo thành sản phẩm của phản ứng chuyển hóa n-hexan trên SZ-SBA-16 và Al-SBA-16-0.35 cho thấy các vật liệu này phù hợp với phản ứng thơm hóa.

4. Nghiên cứu đặc trưng của các xúc tác chứa Pt trên các vật liệu SZ-SBA-16 và Al-SBA-16-0.35 và hoạt tính của Pt/Al-SBA-16-0.35 trong phản ứng thơm hóa n-hexan.

- Pt đã được mang trên SZ-SBA-16 và Al-SBA-16-0.35 với hàm lượng lần lượt là 0.7% và 0.9%. Sau khi tẩm Pt, cấu trúc vật liệu SZ-SBA-16 bị thay đổi, độ trật tự và thông số tế bào mạng giảm trong khi cấu trúc vật liệu Al-SBA-16-0.35 hầu như không thay đổi. Pt được phân tán tốt hơn trên vật liệu SBA-16 biến tính bằng Al do vật liệu có diện tích bề mặt lớn hơn và do Al có tương tác với Pt ở nhiệt độ cao.

- Pt/Al-SBA-16-0.35 là xúc tác khá phù hợp cho phản ứng thơm hóa n-hexan với nhiệt độ phản ứng 5200C. Thời gian phản ứng có ảnh hưởng đến thành phần sản phẩm thơm, khi thời gian phản ứng kéo dài, tỷ lệ benzen so với toluen giảm. Hoạt tính xúc tác giảm ít theo thời gian, chứng tỏ xúc tác khá bền, mặc dù phản ứng được thực hiện ở nhiệt độ cao.

TÀI LIỆU THAM KHẢO

TIẾNG VIỆT

1. Lê Công Dưỡng (1984), Kỹ thuật phân tích cấu trúc bằng tia Rơnghen, Nxb KHKT, Hà Nội.

2. PGS.TS. Trần Thị Đà( Chủ Biên)- GS.TS. Nguyễn Hữu Đĩnh (2007), Phức chất - Phương pháp tổng hợp và nghiên cứu cấu trúc, Nhà xuất bản khoa học và kĩ thuật, tr. 156-162.

3. Trần Thị Như Mai. Hóa học dầu mỏ, Phần II: Giáo trình dành cho sinh viên năm thứ tư Ngành hóa học và Công nghệ hóa học. Trường Đại học Khoa học Tự nhiên, pp. 196-201.

4. Nông Hồng Nhạn (2007), Tổng hợp, đặc trưng và hoạt tính của xúc tác SO42-/ZrO2-Al2O3, Khóa luận Tốt nghiệp, Trường Đại học Khoa học Tự nhiên.

5. Nguyễn Hữu Phú, Vũ Anh Tuấn (1997),"Isome hoá 1 - buten thành isobuten trên các chất xúc tác AlPO-11, SAPO-11 và Zr-SAPO-11", Tạp chí Hoá Học, T.35 (4), tr. 6-8.

6. Nguyễn Hữu Phú (1998), Hấp phụ và xúc tác trên bề mặt vật liệu vô cơ và mao quản, Nxb KHKT, Hà Nội.

7. Nguyễn Hữu Phú (2007), "Vật liệu nano mao quản: hiện trạng, thách thức và triển vọng", Hội nghị xúc tác và hấp phụ toàn Quốc IV, tr. 77-82

8. Hồ Sĩ Thoảng, Lưu Cẩm Lộc (2007), Chuyển hóa hiđrocacbon và cacbon oxit trên các hệ xúc tác kim loại và oxit kim loại, NXB Khoa học Tự nhiên và Công nghệ, Hà Nội.

9. Ngô Thị Thuận, Phạm Xuân Núi (2006), "Nâng cao hoạt tính xúc tác và độ bền của zirconi sunfat hóa có chứa nhôm", Tạp chí Hoá học, 44 (6), tr. 625-631.

10. Ngô Thị Thuận, Phạm Xuân Núi, Nông Hồng Nhạn (2008), "Tổng hợp và đặc trưng của xúc tác SO42-/Al2O3-ZrO2 cấu trúc mao quản trung bình", Tạp chí Hóa học, T. 46 (3), tr. 314-319.

11. Nguyễn Đình Triệu (2006), Các phương pháp vật lý ứng dụng trong hoá học, NXB Đại học Quốc gia Hà Nội, tr. 157-158.

12. Phạm Đình Trọng (2009), Nghiên cứu đặc trưng và hoạt tính xúc tác của vật liệu mao quản trung bình biến tính họ SBA,, Khóa luận Tốt nghiệp, Đại học Khoa học Tự nhiên.

13. Hoàng Trọng Yêm, Dương Văn Tuệ, Nguyễn Đăng Quang, Trịnh Thanh Đoan (2000), Hoá học Hữu cơ. T.2, T.3, Nxb KHKT, Hà Nội.



TIẾNG ANH

14. A. Auroux (1997), Top. Catal., 4, p. 71.

15. A. Corma, V. Fornes, M.I.Juan-Rajadell, J.M.Lopez Nieto (1994), "Influence of preparation conditions on the structure and catalytic properties of ZrO2/SO42- superacid catalysts", Appl.Catal., A: General, Vol. 116, pp 151-156.

16. A. Galarneau, H. Cambon, F. Di Renzo, and F. Fajula (2001), "True microporosity and surface area of mesoporous SBA-15 silicas as a function of synthesis temperature", Langmuir, 17(26), pp 8328-8335.

17. A. Galarneau, N. Cambon, F. Di Renzo, R. Ryoo, M. Choi, and F. Fajula (2003), "Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis", New Journal of Chemistry, 27(1), pp 73-79.

18. A. Vinu, V. Murugesan, W. Böhlmann, M. Hartmann (2004), J. Phys. Chem. B 108, p. 11496.

19. A. Vinu, D.P. Sawant, K. Ariga, V. Hartmann, S.B. Halligudi (2005), Microporous Mesoporous Materials, 80, p. 195.

20. A.V. Ivanov, L.M. Kustov (1998), Russ. Chem. Bull., 47, p. 1061.

21. A.V. Ivanov et al. (2002), "Isomerization of n-alkanes on Pt/WO3-SO4/ZrO2 systems", Catalysis Today, 73, pp 95-103.

22. B. Dragoi et al. (2009), "Acidic and adsorptive properties of SBA-15 modified by aluminum incorporation", Microporous and Mesoporous Materials, 121, pp 7-17.

23. Chi-Feng Cheng, Yi-Chun Lin, Hsu-Hsuan Cheng, Yu-Chuan Chen (2003), "The effect and model of silica concentrations on physical properties and particle sizes of three-dimensional SBA-16 nanoporous materials", Chemical Physics Letters, Vol. 382 (5-6), pp 496-501.

24. Chen et al.(1999), "Postsynthesis Hydrothermal Restructuring of M41S Mesoporous Molecular Sieves in Water", J. Phys. Chem. B,103, pp 1216-1222.

25. C.G. Sonwane, Peter J. Ludovice (2005), "A note on micro- and mesopores in the walls of SBA-15 and hysteresis of adsorption isotherms", Journal of Molecular Catalysis A: Chemical, Volume 238 (1-2), pp 135-137.

26. Cong Nie, Limin Huang, Dongyuan Zhao and Quanzhi Li (2001), "Performance of Pt/Al-SBA-15 catalysts in hydroisomerization of n-dodecane", Catalysis Letters, Vol. 71 (1-2), pp 117-125.

27. C.T. Kresge, M.E. Leonowicz, J.C. Vartuli, J.S. Beck (1992), "Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism", Nature, 359, p 710.

28. Davis M.E.et al. (1988), Nature, 331, pp 698-699.

29. D. Li, Y. Han, J. Song, L. Zhao, X. Xu, Y. Di, F. Xiao (2004), Chem. Eur. J., Vol. 10, p. 5911.

30. J.H. Sinfelt (1982), Catalysis-Science and Technology, 1, 257, Akademie Verlag, Berlin.

31. Deka, R. C. (1998) "Acidity in Zeolites and their characterization by different spectroscopic methods", Ind. J. Chem.Technol., Vol.5, pp 109-123.

32. D. Trong On, S. Kaliaguine, J. Am (2003), "Zeolite-coated mesostructured cellular silica foams", Chem. Soc., Vol. 125, p 618.

33. D. Zhao, J. Feng, Q. Huo, N Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky (1998), Science, Vol. 279, p. 548.

34. D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky (2001), Spectrochim. Acta A 57, p. 2049.

35. Fuxiang et al. (2007), "Direct synthesis of Zr-SBA-15 mesoporous molecular sieves with high zirconium loading: Characterization and catalytic performance after sulfated", Microporous and Mesoporous Materials, 101, pp. 250-255..

36. Gallis, K.W. Landry, C.C. (2001), Ad. Matter, Vol. 13, p. 23.

37. G. Ertl, H. Knozinger, J. Weitkamp (1997), Handbook of Heterogeneous Catalysis, Vol. 5, Wiley-VCH, Weinheim, p 2184

38. G. Muthu Kumaran et al. (2008) "Synthesis and characterization of acidic properties of Al-SBA-15 materials with varying Si/Al ratios", Microporous and Mesoporous Materials, 114, pp 103–109.

39. D. Tichit, D. E. Alami, F. Figuegas. Preparation and anion exchange properties of zirconia. Appl. Catal., A: General 145, 1996. 195 – 210.

40. G.A. Olah (1970), Chem. Eng. News, 45, 77; Science, 168, 1298.

41. G.A. Olah (1973), Angew. Chem. Int. Ed. Engl., 12, p173.

42. Gates B.C., Katzer J.R., and Schuit C.G.A. (1979), Chemistry of Catalytic Processes, McGraw-Hills, Inc.

43. H. Matsuhashi, M.Tanaka, H. Nakamura, K.Arata (2001), "Formation of acid sites in orderd pores of FMS-16 by modification with sulfated zirconia", Appl. Catal.A. 208, p 1.

44. H.-M. Kao, C.-C. Ting, S.-W. Chao (2005), J. Molec. Catal. A: Chem. 235, p. 200.

45. Huo Q.H .et al. (1993), J. Chem. Soc. Commum, pp. 875-876.

46. Hengquan Yang, Lei Zhang, Weiguang Su, Qihua Yang and Can Li (2007), "Asymmetric ring-opening of epoxides on chiral Co(Salen) catalyst synthesized in SBA-16 through the “ship in a bottle” strategy", Journal of Catalysis, Vol. 248 (2), pp 204-212.

47. J.A. Moreno, G. Poncelet (2001) "Isomerization of n-butane over sulfated Al- and Ga-promoted Zirconium Oxide Catalysts. Influence of Promoter and Preparation Method", J. Catal.,Vol 203, pp 453-465.

48. J.C. Yori, J.M. Pareta (1996) "n - butane isomerization on metal promoted sulfated zirconia", Appl. Catal., A: General,147, pp 145 - 157.

49. J. Q. Li, D. Farcasu (1995), "Preparation of sulfated zirconia catalysts with improved control of sulfur content", Appl. Cata., A: General, Vol. 128, pp 97-105.

50. Kazushi Arata (1996), "Preparation of superacids by metal oxides for reaction of butanes and pentanes", Appl. Catal., A: General, Vol. 146, p 332.

51. Kresge C T, Leonowicz M E, Rotrh W J, Vartuli J C, Beck J S (1992), Nature, Vol. 359, p. 710.

52. Katarina Flodström, Viveka Alfredsson (2003), "Influence of the block length of triblock copolymers on the formation of mesoporous silica", Microporous and Mesoporous Materials, Vol. 59 (2-3), pp 167-176

53. Ganapati V. Shanbhag, Trissa Joshep, S.B. Halligudi (2007), "Copper (II) ion exchanged AlSBA-15: A veratile catalyst for intermolercular Hydroamination of terminal alkynes with aromatic amines", Journal of Catalysis, 250, pp. 274-282.

54. G.A. Mills, H. Heinemann, T.H. Milliken, and A.G. Oblad (1953), Ind. Eng. Chem.,45, 134.

55. K.J. Del Rossi, G.H. Hatzikos and A. Huss, Jr. (1993), US Patent, Vol. 5 pp 256-277.

56. K. Schumacher, P. I. Ravikovitch, A. Du Chesne, A. V. Neimark, and K. K. Unger (2000), "Characterization of MCM-48 materials", Langmuir, 16(10), p. 4648-4654.

57. K. Szczodrowski et al. (2008), Micoporous and Mesoporous Materials, Vol. 110, pp 111-118.

58. Kozo Tanabe, Makoto Misono, Vashio Omo (1989), New solid acid and base their catalytic properties, Kodansha LTD, Tokyo.

59. Klimova T., Lizama L., Amezcua J.C., RoqueroP., Terres E., Navarrete J., Dominguez J.M (2004), International Symposium on Advances in Hydroprocessing of Oil Fractions, Oaxaca , Mexique, Vol 98, pp 141-150.

60. L. Fuxiang et al. (2007), Microporous and Mesoporous Materials, Vol. 101, pp 250-255.

61. M. Jaroniec, J. Choma, and M. Kruk (2000), "On the applicability of the Horwath-Kawazoe method for pore size analysis of MCM-41 and related mesoporous materials", Studies in Surface Science and Catalysis, Vol. 128, pp. 225-234.

62. M.J. Girgis and Y.P. Tsao, Ind (1996), Eng. Chem. Res., Vol. 35, p. 386.

63. M. Mesa, L. Sierra, J.-L. Guth (2008), "Contribution to the study of the formation mechanism of mesoporous SBA-15 and SBA-16 type silica particles in aqueous acid solutions", Microporous and Mesoporous Materials, Vol. 112 (1-3), pp 338-350

64. M. Trombetta, G. Busca, M. Lenarda, L. Storaro, M. Pavan (1999), Appl. Catal. A: General, 182, 225.

65. Oliver Christian Gobin (2006), SBA-16 materials: Synthesis, diffusion and sorption properties, Laval University, Ste-Foy, Quebec, Canada.

66. Oğuz Karvan, Hüsnü Atakül (2008), "Investigation of CuO/mesoporous SBA-15 sorbents for hot gas desulfurization Fuel Processing Technology", In Press, Corrected Proof, Available online 24 April 2008.

67. Q.-H. Xia, K. Hidajat, S. Kawi (2000) "Synthesis of SO42-/ZrO2/MCM-41 as a new superacid catalyst", Chem. Commun., pp 2229-2230.

68. R. Mokaya, W. Jones (1996), Chem. Commun, p.. 983.

69. R. Mokaya, W. Jones (1997), J. Catal., pp 172-211.

70. R. Mokaya, W. Jones (1998), Chem. Commun., p. 1839.

71. R. Mokaya, W. Jones (1999), J. Mater. Chem., 9, p. 555.

72. Seo-Hee Cho, Sang-Eon Park (2007), "The effect of hydrophilic agent on pores and walls of SBA-16 type mesoporous silica", Studies in Surface Science and Catalysis, Vol. 170, Part 1, pp 641-647.

73. S.S. Kim, T.R. Pauly, T.J. Pinnavaia (2000), Chem. Commun., Vol. 10, p. 835.

74. S. Shen et al. (2007), J Mater Science, Vol. 42, pp 7057-7061.

75. S. Zeng, J. Blanchard, M. Breysse, Y. Shi, X. Shu, H. Nie, D. Li (2005), Micropor. Mesopor Mater. 85, p. 297.

76. Tae-Wan Kim, Ryong Ryoo, Michal Kruk, Kamil P. Goerszal (2004), "Tailoring the Pore Structure of SBA-16 Silica Molecular Sieve through the use of Copolymer Blends and Control of Synthesis Temperature and Time", Phys. Chem. B,108, pp 11480-11489

77. U. Ciesla, S. Schacht, G. D. Stucky, K. K. Unger, F. Schuth (1996), "Formation of a Porous Zirconium Oxo Phosphate with a High Surface Area by a Surfactant-Assisted Synthesis", Angew. Chem. Int. Ed. Engl, Vol. 35, p 541.

78. Ulrike Ciesla, Ferdi Schüth (1999), "Ordered mesoporous materials",


Microporous and Mesoporous Materials, Vol. 27 (2-3), pp 131-149

79. V. Grieken, R. Calleja, G. Stucky, G.D. Melero, J.A. Garcia, R.A. Iglesias (2003), J. Langmuir, Vol. 19, p. 3966.

80. Wesley J.J. Stevens, Myrjam Mertens, Steven Mullens, Ivo Thijs, Gustaaf Van Tendeloo, Pegie Cool, Etienne F. Vansant (2006), "Formation mechanism of SBA-16 spheres and control of their dimensions", Microporous and Mesoporous Materials, Vol. 93 (1-3), pp 119-124

81. W.M. Hua, Y.D. Xia, Y.H. Yue, Z. Gao (2000), "New Al2O3-Promoted NiSO4/TiO2 Catalysts for Ethylene Dimerization", J. Catal., Vol. 196, p 104.

82. Wikipedia-Online Dictionary.

83. X. Yang, F.C. Jentoft, R.E. Jentoft, F. Girgsdies, T.Ressler (2002), "Sulfated Zirconia with Ordered Mesoporous as an Active Catalyst for n-Butane Isomerization", Catal. Lett. 81, p. 25.

84. Y.D. Xia, W.M. Hua, Y. Tang, Z. Gao (1999), "A highly active solid superacid catalyst for n-butane isomerization: persulfate modified Al2O3–ZrO2", Chem. Commun., pp 1899-1990.

85. Y. Li, W. Zhang, L. Zhang, Q. Yang, Z. Wei, Z. Feng, C. Li (2004), J. Phys. Chem. B, 108, p. 9739.

86. Y. Park, T. Kang, j. Lee, P. Kim, H. Kim, J. Yi (2004), Cata. Today, Vol. 97, pp195-203.

87. Y. Sakamoto, I. Diaz, O. Terasaki, D. Zhao, J. Perez-Pariente, J.M. Kim, G.D. Stucky (2002), J. Phys. Chem. B, Vol 106, p. 3118.

88. Y.-S. Ooi, R. Zakaria, A.R. Mohamed, S. Bhatia (2004), Catal. Commun, 5, p. 441.

89. Y.Y. Huang, T.J. McCarthy, W.M.H. Sachlter (1996), "Mesostructured Sulfated Zirconia with High Catalytic Activity in n-Butane Isomerization", Appl. Catal., A 148, p 135.

90. Y.Y. Sun, L. Zhu, H. Lu, R. Wei, S. Lin, D. Jiang, F.-S. Xiao (2002), "Ordered Mesoporous Materials with Improved Stability and Catalytic Activity", Appl. Catal. A 237, p 21.

91. Y. Yue, Y. Sun, Q. Xu, Z. Gao (1998), Appl. Catal. A: Gen. 175, pp 131.

92. Zhengwei Jin – Xiaodong Wang – Xiuguo Cui (2007), "Synthesis and characterization of ordered and cubic mesoporous silica crystals under a moderately acidic condition", J Material Science, 42, p. 465-471.

93. Z. Luan, J.A. Fournier (2005), Microporous Mesoporous Materials, 79, p 235.



94. Z. Luan, M. Hartmann, D. Zhao, W. Zhou, L. Kevan (1999), Chem. Materials, 11, p. 1621.

PHỤ LỤC

- Phổ XRD

- Ảnh SEM

- Ảnh TEM

- Phổ EDX

- Kết quả đo hấp phụ-giải hấp N2

- Kết quả phân tích GC và GC-MS




tải về 458.86 Kb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương