Chương TỔng quan vật liệu mao quản trung bình (mqtb) trật tự 1 Giới thiệu chung



tải về 458.86 Kb.
trang3/5
Chuyển đổi dữ liệu18.07.2016
Kích458.86 Kb.
#1891
1   2   3   4   5

Thực nghiệm:


Ảnh SEM được chụp trên máy Jeol 5410 LV tại phòng hiển vi điện tử quét thuộc Khoa Vật lý Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội.

2.2.5. Kính hiển vi điện tử truyền qua (Transmission Electron Microscopy TEM)

Kính hiển vi điện tử truyền qua (Transmission Electron Microscopy, viết tắt: TEM) là một thiết bị nghiên cứu vi cấu trúc vật rắn, sử dụng chùm điện tử có năng lượng cao chiếu xuyên qua mẫu vật rắn mỏng và sử dụng các thấu kính từ để tạo ảnh với độ phóng đại lớn (có thể tới hàng triệu lần), ảnh có thể tạo ra trên màn huỳnh quang, trên phim quang học, hay ghi nhận bằng các máy chụp kỹ thuật số.

TEM là một công nghệ ở đó dòng electron được tập trung trên mẫu để tạo ra một hình ảnh rất nhỏ của cấu trúc. Đối lập với vi điện tử quang cổ điển, chùm electron tương tác hầu hết bằng sự nhiễu xạ hoặc khuếch tán hơn là hấp thụ, mặc dù cường độ của dòng truyền qua vẫn ảnh hưởng bởi thể tích và mật độ của vật liệu mà nó đi qua. Cường độ nhiễu xạ phụ thuộc vào hướng mặt phẳng của nguyên tử trong tinh thể tương quan với chùm electron. Ở góc vuông chùm electron được nhiễu xạ mạnh, đưa electron ra khỏi trục của chùm đến, trong khi các góc khác chùm electron nhiễu xạ rộng. Trong trường hợp SBA-16 với cấu trúc Im3m lập phương tâm khối các hướng nhiễu xạ là (100), (110), (111).

Từ ảnh TEM có thể xác định được sự có mặt, vị trí và hình dạng của các mao quản của vật liệu MQTB. Độ phân giải của kính hiển vi điển tử chỉ bị hạn chế bởi bước sóng của electron, điều có thể dễ dàng thay đổi bằng cách điều chỉnh trường tăng tốc. Hiện tại HRTEM cho phép phân biệt ở thang nguyên tử (0.1 nm) [65].

Sơ đồ nguyên lý máy chụp TEM được trình bày trên hình 2.3.


Hình 2.3: Sơ đồ nguyên lý máy chụp TEM




Thực nghiệm:

Ảnh TEM được chụp tại Phòng kính hiển vi điện tử, Viện Vệ sinh dịch tễ trung ương, Yecxanh, Hà Nội.


Hình 2.3: Sơ đồ nguyên lý máy chụp TEM


2.2.6. Phương pháp phổ EDX [82]

Phổ tán sắc năng lượng tia X, hay Phổ tán sắc năng lượng là kỹ thuật phân tích thành phần hóa học của vật rắn dựa vào việc ghi lại phổ tia X phát ra từ vật rắn do tương tác với các bức xạ (mà chủ yếu là chùm điện tử có năng lượng cao trong các kính hiển vi điện tử). Trong các tài liệu khoa học, kỹ thuật này thường được viết tắt là EDX hay EDS xuất phát từ tên gọi tiếng Anh Energy-Dispersive X-ray Spectroscopy.

Nguyên lý của EDX

Kỹ thuật EDX chủ yếu được thực hiện trong các kính hiển vi điện tử, trong đó, ảnh vi cấu trúc vật rắn được ghi lại thông qua việc sử dụng chùm điện tử có năng lượng cao tương tác với vật rắn. Khi chùm điện tử có năng lượng lớn được chiếu vào vật rắn, nó sẽ đâm xuyên sâu vào nguyên tử vật rắn và tương tác với các lớp điện tử bên trong của nguyên tử. Tương tác này dẫn đến việc tạo ra các tia X có bước sóng đặc trưng tỉ lệ với nguyên tử số (Z) của nguyên tử theo định luật MosleyHYPERLINK \l "cite_note-0":



Có nghĩa là, tần số tia X phát ra là đặc trưng với nguyên tử của mỗi chất có mặt trong chất rắn. Việc ghi nhận phổ tia X phát ra từ vật rắn sẽ cho thông tin về các nguyên tố hóa học có mặt trong mẫu đồng thời cho các thông tin về tỉ phần các nguyên tố này.

Có nhiều thiết bị phân tích EDX nhưng chủ yếu EDX được phát triển trong các kính hiển vi điện tử, ở đó các phép phân tích được thực hiện nhờ các chùm điện tử có năng lượng cao và được thu hẹp nhờ hệ các thấu kính điện từ. Phổ tia X phát ra sẽ có tần số (năng lượng photon tia X) trải trong một vùng rộng và được phân tich nhờ phổ kế tán sắc năng lượng do đó ghi nhận thông tin về các nguyên tố cũng như thành phần. Kỹ thuật EDX được phát triển từ những năm 1960 và thiết bị thương phẩm xuất hiện vào đầu những năm 1970 với việc sử dụng detector dịch chuyển Si, Li hoặc GeHYPERLINK \l "cite_note-1".



Hình 2.4: Nguyên lý của phép phân tích EDX

Khi chùm điện tử có năng lượng cao tương tác với các lớp vỏ điện tử bên trong của nguyên tử vật rắn, phổ tia X đặc trưng sẽ được ghi nhận



Kỹ thuật ghi nhận và độ chính xác của EDX

Tia X phát ra từ vật rắn (do tương tác với chùm điện tử) có năng lượng biến thiên trong dải rộng, sẽ được đưa đến hệ tán sắc và ghi nhận (năng lượng) nhờ detector dịch chuyển (thường là Si, Ge, Li...) được làm lạnh bằng nitơ lỏng, là một con chip nhỏ tạo ra điện tử thứ cấp do tương tác với tia X, rồi được lái vào một anốt nhỏ. Cường độ tia X tỉ lệ với tỉ phần nguyên tố có mặt trong mẫu. Độ phân giải của phép phân tích phụ thuộc vào kích cỡ chùm điện tử và độ nhạy của detector (vùng hoạt động tích cực của detector).






Hình 2.5: Sơ đồ nguyên lý bộ ghi nhận phổ EDS

Độ chính xác của EDX ở cấp độ một vài phần trăm, tuy nhiên, EDX tỏ ra không hiệu quả với các nguyên tố nhẹ (ví dụ B, C...) và thường xuất hiện hiệu ứng chồng chập các đỉnh tia X của các nguyên tố khác nhau (một nguyên tố thường phát ra nhiều đỉnh đặc trưng Kα, Kβ..., và các đỉnh của các nguyên tố khác nhau có thể chồng chập lên nhau gây khó khăn cho phân tích.



Những biến thể của EDX

Phổ điện tử Auger (Auger Electron Spectroscopy (AES)): thay vì phát ra các tia X đặc trưng, khi các điện tử có năng lượng lớn tương tác với lớp điện tử sâu bên trong sẽ khiến một số điện tử lớp phía ngoài bị bật ra tạo ra phổ AES.

Phổ huỳnh quang tia X (X-ray Photoelectron Spectroscopy (XPS)): tương tác giữa điện tử và chất rắn gây phát ra phổ huỳnh quang của tia X, có thêm các thông tin về năng lượng liên kết.

Phổ tán sắc bước sóng tia X (Wavelength-Dispersive X-ray Spectroscopy (WDS)): tương tự như phổ EDX nhưng có độ tinh cao hơn, có thêm thông tin về các nguyên tố nhẹ, nhưng lại có khả năng loại nhiễu tốt hơn EDS và chỉ phân tích được một nguyên tố cho một lần ghi phổ.

Thực nghiệm:

Phổ EDX được chụp tại phòng chụp SEM và EDX, Khoa Vật lí, trường Đại học Khoa học Tự nhiên.



2.2.7. Phương pháp xác định diện tích bề mặt riêng [6]

Diện tích bề mặt riêng có ý nghĩa khác nhau đối với chất rắn xốp hay không xốp. Đối với chất rắn không xốp thì diện tích bề mặt riêng bằng tổng diện tích bên ngoài, còn đối với chất rắn xốp thì diện tích bề mặt riêng là tổng diện tích bên trong của nhiều lỗ xốp lẫn tổng diện tích bên ngoài và nó lớn hơn nhiều so với diện tích bề mặt ngoài.



Phương pháp đo diện tích bề mặt hấp phụ và giải hấp N2

Phương pháp phổ biến để xác định diện tích bề mặt riêng của một chất rắn là đo sự hấp phụ của N2 hoặc một số khí khác có khả năng thâm nhập vào tất cả các mao quản và tính toán diện tích bề mặt riêng dựa vào đường đẳng nhiệt hấp phụ.

Phương pháp BET (Brunauner-Emmett-Teller) là phương pháp được sử dụng rộng rãi nhất để xác định diện tích bề mặt của vật liệu thông qua phương trình BET:

(1)

Trong đó:

P: áp suất chất bị hấp phụ ở pha khí.

P0: áp suất hơi bão hòa của chất bị hấp phụ ở trạng thái lỏng tinh khiết ở cùng nhiệt độ.

V: thể tích chất bị hấp phụ ở áp suất tương đối P/P0 tính bằng cm3.

Vm: thể tích lớp hấp phụ đơn phân tử trên toàn bộ bề mặt S tính bằng cm3.

C: hằng số liên quan đến năng lượng hấp phụ đối với lớp bị hấp phụ đầu tiên hay liên quan đến mức độ tương tác giữa chất hấp phụ và chất bị hấp phụ.



Phương pháp đồ thị BET đa điểm

Xuất phát từ phương trình (1) nếu dựng đồ thị phụ thuộc P/P0 thì đường biểu diễn là một đường thẳng có hệ số góc s và hệ số tự do i được tính như sau:

s = (2) i = (3)

Vì vậy thể tích lớp hấp phụ đơn phân tử Vm có thể được suy ra từ (2) và (3):

Vm = (4)

Nếu ta cho rằng một phân tử bị hấp phụ có mặt cắt ngang che phủ một diện tích ACS và Vm là thể tích hấp phụ cực đại ứng với sự che phủ đơn lớp trên toàn bộ 1 gam chất hấp phụ (khi đó nó có thứ nguyên là cm3/g) thì diện tích bề mặt riêng S (m2/g) của chất hấp phụ được tính như sau:

S = (m2/g) (5)

Trong đó:

N = 6,022.1023 là số Avogadro.

22414 là thể tích chiếm bởi 1 mol phân tử chất bị hấp phụ (cm3)

Nitơ là một trong những chất bị hấp phụ được sử dụng rộng rãi nhất để xác định diện tích bề mặt và nó có ACS = 16,2 (A0)2. Nếu đại lượng hấp phụ tính bằng gam (Wm) thì diện tích bề mặt riêng được tính theo công thức sau:

S = (6)

M là khối lượng mol phân tử chất bị hấp phụ.

Phương pháp BET đơn điểm

Thông thường việc xác định diện tích bề mặt được đơn giản hóa bằng cách chỉ sử dụng một điểm trên đường hấp phụ đẳng nhiệt ở vùng tuyến tính của đồ thị BET. Chẳng hạn với chất bị hấp phụ Nitơ có hằng số C đủ lớn để có thể chấp nhận hệ số tự do i = 0. Khi đó phương trình BET trở thành:

Vm = V (7)

Bằng cách tính lượng Nitơ đã bị hấp phụ V ở một giá trị áp suất tương đối nào đó (tốt nhất là ở gần giá trị P/P0 = 0,2 đến 0,3), ta có thể tính Vm nhờ phương trình (7). Diện tích bề mặt riêng được rút ra từ phương trình (5) và (7):

S = (8)

Các đường đẳng nhiệt hấp phụ và giải hấp

Theo IUPAC, có 6 kiểu đường đẳng nhiệt hấp phụ-giải hấp (hình 2.6). Đường đẳng nhiệt hấp phụ-giải hấp cuả vật liệu mao quản trung bình có chứa một vòng trễ, thuộc kiểu IV.





P/P0




Hình 2.3. Các kiểu đường hấp phụ-giải hấp đẳng nhiệt theo IUPAC.


Sự phân bố kích thước lỗ

Sự phân bố thể tích lỗ xốp tương ứng với kích thước lỗ được gọi là sự phân bố kích thước lỗ. Người ta xây dựng đường cong phân bố thể tích lỗ xốp để đánh giá mức độ phân tán của hệ. Nếu đường cong phân bố hẹp thì hệ có kích thước lỗ đồng đều và ngược lại. Đường đẳng nhiệt giải hấp phụ thường được sử dụng để tính toán sự phân bố kích thước lỗ xốp hơn là đường đẳng nhiệt hấp phụ. Đối với cùng một thể tích khí, đường đẳng nhiệt giải hấp phụ ở áp suất thấp, tương ứng với năng lương tự do thấp.

Khí nitơ là khí được sử dụng rộng rãi trong nghiên cứu sự hấp phụ nói chung và trong việc xác định sự phân bố kích cỡ mao quản nói riêng. Đường cong phân bố thể tích lỗ xốp được xác định khi giả thiết các mao quản đều có dạng hình trụ, khi đó bán kính mao quản được tính theo phương trình Kelvin:

rk = (9)

Trong đó:

σ: sức căng bề mặt của Nitơ ở nhiệt độ sôi của nó (8,85 erg.cm-2).

Vm: thể tích mol của Nitơ lỏng (34,7 cm3.mol-1).

R: hằng số khí (8,314.107 erg.mol-1.K-1).

T: nhiệt độ sôi của Nitơ (77K).

P/P0: áp suất tương đối của Nitơ.

rk: bán kính trong của mao quản.

Thay các hằng số vào để tính toán, biểu thức (9) được rút gọn:



(10)

Bán kính Kenvin rk là bán kính lỗ xốp tính được khi sự ngưng tụ xuất hiện tại áp suất tương đối P/P0. Vì trước khi ngưng tụ, một số quá trình hấp phụ đã xảy ra trên thành mao quản, nên rk không phải là bán kính thực của lỗ xốp. Ngược lại, trong suốt qúa trình giải hấp phụ, lớp bị hấp phụ vẫn được duy trì trên thành mao quản. Vì vậy, bán kính mao quản thực rp được đưa ra:

rp = rk + t (11)

Trong đó t là bề dày của lớp bị hấp phụ.

Giá trị t được tính theo phương pháp Boer và được đưa ra trong biểu thức:

(12)

Phương pháp đẳng nhiệt hấp phụ-giải hấp được sử dụng để xác định đặc trưng cho cấu trúc vật liệu mao quản trung bình. Dựa vào các số liệu đo được ta có thể xác định được các thông số về cấu trúc như diện tích bề mặt riêng, thể tích mao quản, sự phân bố kích thước mao quản.



Thực nghiệm

Diện ttích bề mặt riêng BET được đo tại Bộ môn Công nghệ Hóa học, Trường Đại học Bách Khoa Hà Nội.



Chương 3. KẾT QUẢ VÀ THẢO LUẬN

3.1. Vật liệu SBA-16 biến tính bằng SO42-/ZrO2

Sự loại bỏ chất hoạt động bề mặt là bước không thể thiếu trong quá trình tổng hợp vật liệu mao quản trung bình. Nếu chất hoạt động bề mặt không được loại bỏ hoàn toàn, nó sẽ gây ảnh hưởng rất nhiều đến tính chất của vật liệu. Đặc biệt, do chất hoạt động bề mặt nằm trong mao quản nên nó sẽ làm giảm đường kính mao quản và giảm diện tích bề mặt riêng của vật liệu, làm khả năng hấp phụ và xúc tác của vật liệu bị hạn chế rất nhiều. Do đó, trước khi vật liệu có thể được ứng dụng làm chất mang, xúc tác hay vật liệu hấp phụ, chất hoạt động bề mặt phải được loại bỏ hoàn toàn nhưng vẫn đảm bảo giữ được cấu trúc của vật liệu ban đầu.

Có nhiều phương pháp để loại bỏ chất hoạt động bề mặt. Phương pháp chiết là một phương pháp nhẹ nhàng và hiệu quả để loại bỏ chất hoạt động bề mặt mà không gây ảnh hưởng nào khác, giữ được nhiều nhóm silanol trên bề mặt và làm tăng tính ưa nước của vật liệu. Tuy nhiên, phương pháp này có nhược điểm là không loại bỏ được hoàn toàn chất hoạt động bề mặt, đặc biệt là đối với F127 [79]. Phương pháp dùng bức xạ lò vi sóng để loại bỏ chất hoạt động bề mặt đã được Gallis và cộng sự [36] sử dụng. Phương pháp này có thể thực hiện ở nhiệt độ phòng, nhanh và thu được vật liệu có cấu trúc trật tự hơn. Tuy nhiên, quá trình thực hiện đòi hỏi sự kiểm soát thời gian nghiêm ngặt và khó khả thi, không phù hợp trên quy mô rộng. Trong luận văn này, chúng tôi sử dụng phương pháp nung, một phương pháp thực hiện dễ dàng và loại bỏ được hoàn toàn chất hoạt động bề mặt ra khỏi cấu trúc vật liệu [52]. Chúng tôi đã tiến hành đo phân tích nhiệt trước khi nung và phổ IR sau khi nung để xác định nhiệt độ nung thích hợp cho vật liệu.

3.1.1. Phân tích nhiệt trọng lượng (TGA)

Trên giản đồ phân tích nhiệt của Zr-SBA-16 (hình 3.1) ta thấy có một pic thu nhiệt ở 94.800C, mất khối lượng 10.21% (đường TGA) và một pic toả nhiệt ở 289.940C, mất khối 19.21%. Trên đường cong DTA của giản đồ phân tích nhiệt, pic đầu tiên tương ứng với sự mất nước, pic thứ hai tương ứng với sự cháy của chất hoạt động bề mặt, bắt đầu từ khoảng 2200C và kết thúc ở khoảng 6000C. Bắt đầu từ 5500C đường TGA gần như nằm ngang và đến 6000C hoàn toàn không còn sự giảm khối lượng nữa, chứng tỏ chất hoạt động bề mặt đã cháy hết.





Hình 3.1: Giản đồ phân tích nhiệt trọng lượng của Zr-SBA-16.

Như vậy, nhiệt độ nung 550-6000C là thích hợp để loại bỏ hoàn toàn chất hoạt động bề mặt ra khỏi cấu trúc vật liệu silica mao quản trung bình. Điều này cũng được chứng minh trong phổ IR của vật liệu sau khi nung.



3.1.2. Phổ hồng ngoại (IR)

Phổ IR của SBA-16 (hình 3.2) và Zr-SBA-16 (hình 3.3) đều có các đỉnh hấp thụ đặc trưng của vật liệu silica:

Đám phổ 410-465 cm-1 đặc trưng cho dao động biến dạng T-O-T trong tứ diện TO4 (T: Si, Zr). Đám phổ này không đặc trưng cho cấu trúc tinh thể hay vô định hình. Theo kết quả nghiên cứu thì pha tinh thể hay pha vô định hình đều cho đám phổ đặc trưng này.

Dải phổ ở khoảng 1080 và 800 cm-1 đặc trưng cho dao động hoá trị bất đối xứng và đối xứng của liên kết O-T-O trong tứ diện TO4.



Dải phổ ở khoảng 3460 cm-1 đặc trưng cho dao động hóa trị của liên kết O-H của nước hấp phụ vật lý và liên kết Si-O-H trong vật liệu. Dải phổ ở 1640 cm-1 đặc trưng cho dao động biến dạng HOH của nước hấp phụ trên vật liệu.


Hình 3.2: Phổ IR của SBA-16




Hình 3.3: Phổ IR của Zr-SBA-16

Trên phổ IR hoàn toàn không xuất hiện các pic đặc trưng cho liên kết C-H, C-O hay C-C của chất hoạt động bề mặt, chứng tỏ chất hoạt động bề mặt đã được loại bỏ hoàn toàn ra khỏi cấu trúc vật liệu.

Phổ IR của SBA-16 xuất hiện pic dao động biến dạng của (Si-)O-H ở 961.5 cm-1 nhưng trong phổ của Zr-SBA-16 pic này biến mất. Đây có thể là do sự hình thành liên kết Si-O-Zr khi mang Zr lên vật liệu hoặc do sự ngưng tụ các nhóm silanol Si-O-H tạo thành liên kết silioxan Si-O-Si sau khi nung ở nhiệt độ cao.

Như vậy, bằng phương pháp phân tích nhiệt trọng lượng và phổ IR chúng tôi đã xác định được nhiệt độ nung thích hợp để loại bỏ hoàn toàn chất hoạt động bề mặt trong vật liệu là 550-6000C. Đối với xúc tác chứa SO42-/ZrO2, nhiệt độ nung thích hợp là 6500C [9]. Do đó, chúng tôi đã tiến hành tổng hợp vật liệu SBA-16 ở nhiệt độ nung 5500C và SBA-16 biến tính bằng zirconia sunfat hóa ở 6500C.



3.1.3. Phổ nhiễu xạ tia X

Các vật liệu mao quản trung bình trật tự có các pic nhiễu xạ tia X đặc trưng cho cấu trúc tại vùng góc quét nhỏ 2θ = 0-70. Vì vậy, chúng tôi đã tiến hành đo phổ nhiễu xạ tia X góc hẹp của các vật liệu SBA-16, SZ/SBA-16 và SZ-SBA-16 nhằm xác định cấu trúc của vật liệu.

Trên phổ nhiễu xạ tia X góc nhỏ của mẫu SBA-16 (hình 3.4) và các mẫu SZ/SBA-16, SZ-SBA-16 (hình 3.5) đều có các pic đặc trưng của vật liệu MQTB, trong đó phổ của mẫu SBA-16 có một pic sắc nhọn tương ứng với mặt phản xạ (110) ở góc 2 = 0.760 và hai pic phụ ở các góc 1.330 và 1.760, đặc trưng của vật liệu SBA-16 với cấu trúc lập phương tâm khối Im3m.

Thông số tế bào mạng a0 được tính từ khoảng cách d là:

a0 = d(110)x = 12.06x = 17.06 nm.

Đối với mẫu SZ/SBA-16 (hình 3.5a), sau khi tiến hành biến tính SBA-16 bằng SO42-/ZrO2, các pic phụ biến mất, thể hiện sự giảm độ trật tự của vật liệu, thông số tế bào mạng a0 là 15.17 nm, giảm đi so với mẫu SBA-16 ban đầu. Như vậy, phương pháp tổng hợp sau làm giảm độ trật tự và thay đổi cấu trúc của SBA-16.






Hình 3.4: Phổ nhiễu xạ tia X góc nhỏ của SBA-16



Mau 2


Hình 3.5: Phổ nhiễu xạ tia X góc nhỏ của SZ/SBA-16(a) và SZ-SBA-16(b).

Với SZ-SBA-16 (hình 3.5b), các pic phụ vẫn xuất hiện chứng tỏ SZ-SBA-16 tổng hợp theo phương pháp tổng hợp trực tiếp có độ trật tự cao hơn mẫu tổng hợp hai bước và tương đương so với SBA-16.

Một điều rất lí thú là thông số tế bào mạng a0 của mẫu SZ-SBA-16 bằng 18.73 nm, lớn hơn so với mẫu SBA-16 (a0 = 17.06 nm) và SZ/SBA-16 (15.17 nm).

Điều này có thể được giải thích như sau:

Đối với mẫu tổng hợp theo hai bước SZ/SBA-16, zirconi không hoàn toàn đi vào mạng SBA-16 mà một phần bám ở trên bề mặt hoặc chui vào trong hệ thống mao quản, làm giảm độ trật tự của vật liệu. Mặt khác, phương pháp tổng hợp theo hai bước có thêm một giai đoạn nung thứ hai sau khi vật liệu SBA-16 đã được tạo thành, gây ra sự co thành mao quản của SBA-16. Sự co thành mao quản này gây ra bởi các nhóm silanol (Si-O-H) ngưng tụ lại với nhau ở nhiệt độ cao, hình thành nên liên kết cầu nối silioxan (Si-O-Si) và làm cấu trúc trở nên đặc khít hơn và làm giảm hằng số mạng của vật liệu:

-Si-OH + HO-Si- → -Si-O-Si- + H2O

Đối với mẫu đồng kết tủa SZ-SBA-16, có thể zirconi đã đi vào trong mạng lưới và thay thế đồng hình với silic nên độ trật tự của vật liệu vẫn được giữ nguyên và cao hơn so với mẫu SZ/SBZ-16. Khoảng cách mặt phản xạ d110 của SZ-SBA-16 lớn hơn của SBA-16 là do bán kính ion của Zr4+(0.84Å) lớn hơn rất nhiều so với Si4+ (0.42Å) và độ dài liên kết Zr-O (2.28Å) cũng lớn hơn liên kết Si-O (1.62Å). Sự mở rộng tế bào mạng này có thể đánh dấu cho sự kết hợp thành công của Zr vào mạng cấu trúc SBA-16 bằng phương pháp tổng hợp trực tiếp.

Để xác định dạng tồn tại của zirconi trong vật liệu SBA-16, chúng tôi đã tiến hành đo phổ nhiễu xạ tia X góc lớn của các mẫu SZ/SBA-16 và SZ-SBA-16. Kết quả được biểu diễn trên hình 3.6.






Hình 3.6: Phổ nhiễu xạ tia X góc lớn của SZ/SBA-16(a) và SZ-SBA-16(b)

Trên phổ XRD với góc quét 2θ từ 10 đến 700 của SZ/SBA-16 và SZ-SBA-16 không thấy xuất hiện pic đặc trưng cho các dạng tinh thể của ZrO2, chứng tỏ rằng zirconi không hoặc chỉ tồn tại một lượng rất nhỏ dưới dạng các cụm oxit ZrO2 đơn tinh thể và đã được phân tán đồng đều trong cấu trúc SBA [35].



3.1.4. Phương pháp SEM

Đối với vật liệu xúc tác, tính chất bề mặt và kích thước hạt có ảnh hưởng lớn đến khả năng xúc tác, vì vậy chúng tôi đã tiến hành chụp ảnh SEM của SZ/SBA-16 và SZ-SBA-16 để xác định tính chất bề mặt và đánh giá kích thước hạt của các vật liệu này. Kết quả được biểu diễn trên hình 3.7.






Hình 3.7: Ảnh SEM của SZ/SBA-16(a) và SZ-SBA-16(b)

Hình ảnh SEM cho thấy SZ/SBA-16 (hình 3.7a) bao gồm các hạt có kích thước không đồng đều và bị kết dính lại với nhau, trong khi mẫu SZ-SBA-16 (hình 3.7b) có độ xốp cao, các hạt có kích thước nhỏ, đồng đều hơn và ít bị kết dính. Diện tích bề mặt riêng của vật liệu được tính bằng tổng diện tích bề mặt bên ngoài và diện tích mao quản bên trong của các hạt, kích thước hạt nhỏ sẽ làm tăng diện tích bề mặt bên ngoài, tăng khả năng tiếp xúc với chất phản ứng. Do đó, mẫu tổng hợp theo phương pháp trực tiếp có ưu điểm hơn so với mẫu tổng hợp hai bước.



3.1.5. Phương pháp TEM

Đối với các vật liệu mao quản trung bình, phương pháp chụp ảnh TEM là một phương pháp nghiên cứu hữu hiệu để xác định hình dạng, kích thước và sự sắp xếp của các mao quản bên trong vật liệu.

Hình ảnh TEM của SZ/SBA-16 và SZ-SBA-16 (hình 3.8) cho thấy các vật liệu vẫn giữ được cấu trúc MQTB khá đồng đều và trật tự sau khi biến tính bằng zirconia sunfat hóa.

Ảnh TEM của SZ/SBA-16 (hình 3.8a) và SZ-SBA-16 (hình 3.8b) cho thấy mao quản của SZ/SBA-16 sắp xếp không đồng đều và trật tự bằng SZ-SBA-16. Những vùng tối trên ảnh TEM của SZ/SBA-16 có thể là do một phần mao quản bị che lấp bởi các cụm oxit ZrO2 nhưng với hàm lượng thấp nên không thu được tín hiệu trên phổ XRD góc lớn.










Hình 3.8: Ảnh TEM của SZ/SBA-16(a) và SZ-SBA-16(b)

Ảnh TEM của SZ-SBA-16 (hình 3.8b) không thấy xuất hiện các cụm oxit ZrO2 trên bề mặt hay trong mao quản của vật liệu, chứng tỏ Zr đã được đi vào trong mạng cấu trúc của SBA-16 hoặc được phân tán dưới dạng các hạt nano oxit có kích thước nhỏ hơn kích thước mao quản của SZ-SBA-16.

Các kết quả này hoàn toàn phù hợp với kết luận rút ra được từ phương pháp phổ nhiễu xạ tia X.

Như vậy, phương pháp tổng hợp trực tiếp mang lại vật liệu có độ trật tự cao và mao quản đồng đều hơn phương pháp tổng hợp hai bước.




tải về 458.86 Kb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương