Các tác giả Chương 1 Các đại phân tử sinh học I. Nucleic acid


Bảng 5.1. Các tiểu đơn vị của RNA polymerase



tải về 1.11 Mb.
trang6/15
Chuyển đổi dữ liệu30.08.2016
Kích1.11 Mb.
#29512
1   2   3   4   5   6   7   8   9   ...   15

Bảng 5.1. Các tiểu đơn vị của RNA polymerase


3. Các yếu tố giúp RNA polymerase khởi đầu phiên mã

Trong khi RNA polymerase của prokaryote chỉ cần thêm một yếu tố khởi đầu là σ để khởi động phiên mã thì RNA polymerase của eukaryote phải cần nhiều yếu tố khởi đầu, các yếu tố này được gọi là các yếu tố phiên mã tổng quát. Mặt khác, sự khởi đầu phiên mã ở eukaryote còn phải đối mặt với hiện tượng các DNA được đóng gói trong nucleosome và các dạng cao hơn của cấu trúc chromatin. Điều này đòi hỏi phải có nhiều yếu tố khác thêm vào để giúp khởi động quá trình phiên mã.

3.1. Vai trò của các yếu tố phiên mã tổng quát

Các yếu tố phiên mã tổng quát giúp RNA polymerase vào đúng vị trí trên promoter, giúp tách hai sợi đơn của DNA ra để phiên mã được bắt đầu, và giải phóng RNA polymerase khỏi promoter một khi phiên mã đã được khởi động xong để đi vào giai đoạn kéo dài.

Các yếu tố này được gọi là “tổng quát” vì chúng gắn trên tất cả các promoter được sử dụng bởi RNA polymerase II. Do đó, chúng được viết tắt là TFII (transcription factor for polymerase II), bao gồm TFIIA, TFIIB...

Như đã mô tả ở trên, nhiều promoter của eukaryote chứa hộp TATA. Hộp này được nhận dạng bởi một tiểu đơn vị của TFIID là TBP (TATA binding protein: protein gắn TATA). Phức hợp TBP-DNA tạo nên một cái nền để thu hút các TFII khác và RNA polymerase đến promoter. In vitro, các yếu tố phiên mã tổng quát khác đến gắn vào promoter theo thứ tự sau: TFIIA, TFIIB, TFIIF cùng RNA polymerase II, TFIIE và TFIIH. Sau đó, vùng promoter được mở xoắn. Khác với vi khuẩn, sự mở xoắn ở đây cần có năng lượng cung cấp từ sự thủy phân ATP nhờ TFIIH (yếu tố này có hoạt tính giống helicase).

Sau đó cũng xảy ra hiện tượng khởi đầu sẩy giống như ở prokaryote cho đến khi có sự biến đổi về cấu hình nhằm giải phóng RNA polymerase II khỏi promoter và đi vào giai đoạn kéo dài. Tuy nhiên, ở đây có một bước mà không tìm thấy ở prokaryote đó là sự gắn thêm các gốc phosphate vào đuôi của RNA polymerase (đuôi này còn được gọi là CTD: carboxyl terminal domain). Sự phosphoryl hóa này cũng được xúc tác bởi TFIIH nhờ hoạt tính protein kinase của nó (Hình 5.3).

3.2. Vai trò của các tác nhân hoạt hóa, phức hợp trung gian và enzyme biến đổi chromatin.

Ngoài các yếu tố phiên mã tổng quát, RNA polymerase II còn cần sự hỗ trợ của các yếu tố khác (Hình 5.4).

Đầu tiên, cần có các tác nhân hoạt hóa phiên mã (transcriptional activator) đến gắn vào các trình tự đặc hiệu trên DNA (các enhancer) để hấp dẫn RNA polymerase II đến vị trí bắt đầu phiên mã. Sự hấp dẫn này cần thiết để RNA polymerase II và các yếu tố phiên mã tổng quát vượt qua trở ngại khi gắn với DNA được đóng gói trong chromatin.

Tiếp đến, sự khởi đầu phiên mã in vivo còn cần sự hiện diện của các protein tạo thành phức hợp trung gian (mediator complex). Phức hợp này cho phép tác nhân hoạt hóa tác động tốt lên RNA polymerase II và các yếu tố phiên mã tổng quát.

Cuối cùng, sự phiên mã còn cần các enzyme biến đổi chromatin, bao gồm phức hợp tái tạo mô hình chromatin (chromatin remodeling complex) và enzyme histone acetylase. Cả hai có tác dụng giúp cho bộ máy khởi đầu phiên mã có thể gắn vào DNA trong chromatin một cách dễ dàng.




Hình 5.3. Các yếu tố phiên mã tổng quát giúp khởi đầu phiên mã

Như vậy, có rất nhiều protein gắn vào promoter để khởi động sự phiên mã ở eukaryote. Thứ tự gắn của các protein này thay đổi đối với các gen khác nhau. Thực tế, một số có thể gắn với nhau ở xa DNA rồi được mang đến DNA dưới dạng phức hợp. Ví dụ: phức hợp trung gian, RNA polymerase II, và một số yếu tố phiên mã tổng quát có thể gắn với nhau trong nhân tương rồi được mang đến DNA.



Hình 5.4. Các tác nhân hoạt hóa, phức hợp trung gian và các thành phần biến đổi nucleosome trong phiên mã

4. Các yếu tố kích thích RNA polymerase II hoạt động trong giai đoạn kéo dài

Một khi RNA polymerase II bắt đầu chuyển sang giai đoạn kéo dài thì các yếu tố khởi đầu được loại bỏ như yếu tố phiên mã tổng quát và phức hợp trung gian. Thay vào đó, các yếu tố kích thích giai đoạn kéo dài được thu hút đến, bao gồm TFIIS và hSPT5. Ngoài ra, còn có các yếu tố khác được huy động để phục vụ cho quá trình biến đổi RNA mới được tổng hợp.

Giai đoạn kéo dài trong phiên mã được song hành chặt chẽ với các bước biến đổi RNA mới được tổng hợp. Như đã phân tích ở trên, có một bước quan trọng diễn ra khi chuyển từ giai đoạn khởi đầu sang kéo dài là sự phosphoryl hóa đuôi CTD của RNA polymerase II. Sự phosphoryl hóa này không những giúp RNA polymerase II thoát khỏi các protein ở vị trí bắt đầu phiên mã mà còn cho phép các protein khác đến kết hợp với đuôi để giúp quá trình kéo dài phân tử RNA và biến đổi RNA tiền thân.




5. Quá trình biến đổi các RNA mới được tổng hợp

Ở eukaryote, sự phiên mã chỉ là bước đầu tiên trong một loạt các phản ứng bao gồm cả sự biến đổi hai đầu của mRNA tiền thân và loại bỏ các intron để tạo thành mRNA hoàn chỉnh.


5.1. Sự gắn mũ vào đầu 5’

Ngay khi RNA polymerase II vừa mới tạo ra khoảng 25 ribonucleotide của RNA, đầu 5’ của phân tử RNA này được biến đổi bằng cách gắn thêm một cái mũ là guanine có biến đổi hóa học. Phản ứng gắn mũ được thực hiện bởi ba loại enzyme là:

- Phosphatase có tác dụng loại một gốc phosphate khỏi đầu 5’ của RNA mới sinh.

- Guanylyl transferase gắn GMP bằng liên kết đảo ngược (5’ với 5’ thay vì 5’ với 3’) vào đầu 5’ của RNA đang được tổng hợp.

- Methyl transferase gắn nhóm methyl vào guanosine (Hình 5.5).

Trong nhân, mũ gắn với một phức hợp protein được gọi là CBC (CAP-binding complex: phức hợp gắn mũ) giúp RNA được xử lý tốt và được chuyển ra ngoài. Mũ 5’ còn có vai trò quan trọng trong quá trình dịch mã mRNA trong bào tương.

5.2. Sự gắn đuôi poly(A) vào đầu 3’ và kết thúc phiên mã

Sự gắn đuôi poly(A) vào đầu 3’ được liên kết với sự kết thúc phiên mã. Các enzyme cần thiết cho các quá trình này được tập trung trên đuôi CTD của RNA polymerase II, bao gồm CPSF (cleavage and polyadenylation specificity factor: yếu tố đặc hiệu tách RNA và gắn đuôi polyA) và CstF (cleavage stimulation factor: yếu tố kích thích tách RNA).

Khi RNA polymerase di chuyển đến cuối gen, nó gặp những trình tự đặc hiệu (được gọi là tín hiệu polyA). Trình tự này được phiên mã thành RNA, thúc đẩy chuyển CPSF và CstF đến gắn vào đoạn RNA này. Sau đó các protein khác sẽ được tập trung đến để khởi đầu sự tách rời RNA và gắn đuôi poly(A).

Sự gắn đuôi được thực hiện bởi enzyme poly(A) polymerase (PAP). Enzyme này thêm khoảng từ vài chục đến 200-250 adenine vào đầu 3’ của RNA đã được tách ra. Enzyme PAP sử dụng ATP làm cơ chất và hoạt động giống RNA polymerase, tuy nhiên không có khuôn mẫu. Người ta vẫn chưa rõ yếu tố nào quyết định chiều dài của đuôi nhưng quá trình này có liên quan đến các protein gắn đặc hiệu với đuôi poly(A).

Sau khi RNA được tách ra và gắn đuôi poly(A), RNA polymerase vẫn chưa kết thúc phiên mã ngay. Nó còn tiếp tục di chuyển dọc theo khuôn mẫu và tạo ra một phân tử RNA thứ hai có thể dài hàng trăm nucleotide trước khi kết thúc. Sau đó, RNA polymerase được tách ra khỏi khuôn mẫu, giải phóng RNA mới và RNA này sẽ bị giáng hóa.





Hình 5.5. Phản ứng gắn mũ vào đầu 5’ của RNA

5.3. Quá trình cắt nối gen (splicing)

Đây là quá trình loại bỏ các intron và nối các exon lại với nhau. Quá trình này được thực hiện phần lớn bởi các RNA thay vì protein.

Các phân tử RNA này tương đối ngắn (dưới 200 nucleotide) được gọi là snRNA. Có năm loại liên quan đến dạng cắt nối chính là U1, U2, U4, U5 và U6. Mỗi snRNA được kết hợp với nhiều protein để hình thành snRNP.

Có ba trình tự nằm trên intron đóng vai trò quan trọng trong quá trình cắt nối là: vị trí cắt nối đầu 5’, vị trí phân nhánh là một trình tự giàu các pyrimidine bao quanh một nucleotide adenine ở gần đầu 3’, và vị trí cắt nối đầu 3’.

Đầu tiên, vị trí cắt nối đầu 5’ được nhận dạng bởi U1 snRNP bằng sự bắt cặp các base bổ sung. Vị trí phân nhánh cũng được nhận dạng bởi BBP (branch-point binding protein: protein gắn vị trí phân nhánh) và U2AF. U2 snRNP đến thay thế BBP (nhờ U2AF giúp đỡ). Sự bắt cặp base giữa U2 snRNA và vị trí phân nhánh làm thừa ra một gốc A không bắt cặp và sẵn sàng phản ứng với vị trí 5’. Sau đó U4 và U6 snRNP cùng U5 snRNP đến gắn với phức hợp trên.

Dạng U1 rời khỏi phức hợp và U6 thế chỗ U1 tại vị trí cắt nối đầu 5’. U4 được giải phóng để U6 tương tác với U2. Điều này làm cho vị trí cắt nối đầu 5’ và vị trí phân nhánh được đặt kề nhau và tạo điều kiện cho phản ứng cắt nối xảy ra. Nucleotide adenine đặc hiệu ở vị trí phân nhánh tấn công và cắt intron ở vị trí đầu 5’. Đồng thời có một liên kết đồng hóa trị xảy ra giữa A ở vị trí phân nhánh và đầu 5’ của intron tạo nên một cấu trúc hình thòng lọng. Đầu 3’ của exon trước nối với đầu 5’ của exon kế tiếp và thòng lọng intron được giải phóng (Hình 5.6).


V. Phiên mã ngược

Phiên mã ngược là quá trình tổng hợp DNA dựa trên khuôn mẫu RNA. Quá trình này được xúc tác bởi một loại enzyme đặc biệt gọi là enzyme phiên mã ngược (RT: reverse transcriptase). Enzyme này có cả hoạt tính DNA polymerase và hoạt tính RNase H. Cũng giống như DNA polymerase trong quá trình tái bản DNA, enzyme phiên mã ngược đòi hỏi phải có primer (mồi) đặc biệt để tổng hợp nên DNA mới.





Hình 5.6. Quá trình cắt nối gen

Enzyme phiên mã ngược được phát hiện lần đầu tiên ở retrovirus. Sau khi các retrovirus đi vào tế bào vật chủ, genome của RNA của nó sẽ được phiên mã ngược thành DNA sợi đôi, rồi tích hợp vào DNA của vật chủ. Quá trình phiên mã ngược này khá phức tạp, người ta có thể tóm tắt thành 10 bước như sau:

- Bước 1: Một tRNA của tế bào có tính đặc hiệu với retrovirus đóng vai trò primer để khởi phát quá trình phiên mã ngược. Primer lai với vùng bổ sung trên genome của RNA của retrovirus gọi là vị trí gắn primer (PBS: primer-binding site).

- Bước 2: Một đoạn DNA được kéo dài từ tRNA có trình tự bổ sung với trình tự của genome RNA của retrovirus.

- Bước 3: Trình tự R đầu 5’ và U5 của virus bị loại bỏ bởi RNase H.

- Bước 4: Đổi khuôn mẫu lần thứ nhất (first template exchange) còn được gọi là “nhảy” lần một: DNA đến lai với trình tự R còn lại ở đầu 3'.

- Bước 5: Một sợi DNA được kéo dài từ đầu 3’.

- Bước 6: Hầu hết RNA virus bị loại bỏ bởi RNase H.

- Bước 7: Sợi DNA thứ hai được kéo dài từ RNA còn lại của virus.

- Bước 8: Cả tRNA và phần RNA còn lại của virus bị loại bỏ bởi RNase H.

- Bước 9: Đổi khuôn mẫu lần thứ hai (“nhảy” lần hai): vùng PBS của sợi DNA thứ hai đến lai với vùng PBS của sợi thứ nhất.

- Bước 10: Kéo dài cả hai sợi DNA.

R là những trình tự lặp lại trên genome của retrovirus (ở đầu 5’ và 3’), U5 và U3 là những vùng mã hóa cho những tín hiệu tích hợp ở đầu 5’ và 3’ (Hình 5.7).

Ngày nay, người ta cũng phát hiện enzyme phiên mã ngược ở các virus động vật khác như hepadnavirus, và ở các virus thực vật như caulimovirus. Tất cả chúng được gọi là retrovirus. Ngoài ra, người ta còn phát hiện hoạt tính enzyme phiên mã ngược ở một số dòng của myxobacteria và E. coli. Enzyme phiên mã ngược đã trở thành một công cụ không thể thiếu trong sinh học phân tử. Nó giúp các nghiên cứu viên phiên mã ngược mRNA của tế bào thành cDNA (complementary DNA), rồi sau đó có thể khuếch đại, tạo dòng và biểu hiện bằng các phương pháp đặc biệt. Sự phát hiện enzyme phiên mã ngược ở nhiều loại virus và đặc biệt là ở một số vi khuẩn cũng có ý nghĩa quan trọng trong việc nghiên cứu sự tiến hóa của hệ thống sinh giới.






tải về 1.11 Mb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5   6   7   8   9   ...   15




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương