TIÊu chuẩn quốc gia tcvn 6852-1: 2008 iso 8178-1: 2006


Kiểm tra nhiễu của máy phân tích CO



tải về 0.85 Mb.
trang5/13
Chuyển đổi dữ liệu19.07.2016
Kích0.85 Mb.
#2054
1   2   3   4   5   6   7   8   9   ...   13

8.9.2. Kiểm tra nhiễu của máy phân tích CO

Nước và CO2 có thể gây nhiễu đối với hoạt động của máy phân tích CO. Do đó, một khí span CO2 có nồng độ 80 % đến 100 % giá trị toàn thang đo của phạm vi đo lớn nhất được dùng trong thử nghiệm phải được nổi bọt qua nước ở nhiệt độ trong phòng và độ nhạy của máy phân tích được ghi lại. Độ nhạy của máy phân tích không được lớn hơn 1 % của giá trị toàn thang đo đối với các phạm vi đo bằng hoặc lớn hơn 300 ppm hoặc lớn hơn 3 ppm đối với các phạm vi đo nhỏ hơn 300 ppm.



8.9.3. Kiểm tra sự dập tắt các khí trong máy phân tích NOx

Hai khí dùng cho các máy phân tích CLD (và HCLD) là CO2 và hơi nước. Độ nhạy dập tắt cho các khí này tỷ lệ với nồng độ của chúng và do đó cần đến các kỹ thuật kiểm tra để xác định sự dập tắt ở các nồng độ cao nhất theo kinh nghiệm trong quá trình kiểm tra.



8.9.3.1. Kiểm tra sự dập tắt CO2

Đưa khí span CO2 có nồng độ 80 % đến 100 % của giá trị toàn thang đo của phạm vi đo lớn nhất qua máy phân tích NDIR và ghi lại giá trị CO2 là A. Sau đó phải pha loãng khí này xấp xỉ 50 % với khí span NO và cho đi qua NDIR và (H) CLD, với các giá trị CO2 và NO được ghi tương ứng là B và C. Ngắt khí span CO2 và chỉ cho khí NO đi qua (H) CLD và giá trị NO ghi được là D.

Sự dập tắt phải được tính toán như sau:



(19)

trong đó

A nồng độ CO2 không pha loãng được đo với NDIR, [%];

B nồng độ CO2 pha loãng được đo với NDIR, [%];

C nồng độ NO pha loãng được đo với (H) CLD, [ppm];

D nồng độ NO không pha loãng được đo với (H) CLD, [ppm].

Có thể dùng các phương pháp pha loãng và xác định lượng các giá trị khí span CO2 và CO như trộn/ phối liệu động lực.



8.9.3.2. Kiểm tra sự dập tắt bằng nước

Phép kiểm tra này chỉ áp dụng cho đo nồng độ của khí ẩm. Tính toán sự dập tắt bằng nước phải xem xét sự pha loãng khí hiệu chuẩn NO với hơi nước và xác định tỷ lệ của nồng độ hơi nước của hỗn hợp tới mức yêu cầu trong quá trình kiểm tra.

Một khí hiệu chuẩn NO có nồng độ 80 % đến 100 % của giá trị toàn dải đo của dải hoạt động thông thường phải được đưa tới (H) CLD và ghi lại giá trị NO là D. Sau đó làm nổi bọt khí span NO trong nước ở nhiệt độ 298 ± 5 K (25 ± 5 oC), đưa qua (H) CLD và ghi giá trị NO là C. Nhiệt độ nước phải được xác định và ghi lại. Áp suất hơi bão hòa của hỗn hợp tương ứng với nhiệt độ bọt nước (F) phải được xác định và ghi lại là G. Nồng độ hơi nước (H, theo %) của hỗn hợp phải được tính theo công thức sau:

H = 100 x (G/pb)

(20)

Nồng độ khí span NO được pha loãng (trong hơi nước) mong muốn (De) được tính như sau:

De = D x (1 - H/100)

(21)

Đối với khí thải điêzen, nồng độ nước lớn nhất trong khí thải (theo %) trong thử nghiệm phải được đánh giá với sự thừa nhận tỷ số nguyên tử nhiên liệu H : C là 1,8 : 1, từ nồng độ khí span CO2 cực đại A trong dòng khí thải:

Hm = 0,9 x A

(22)

Ghi lại H, De và Hm.

Sự dập tắt bằng nước phải được tính toán như sau:



EH2O = 100 x [(De - C)/De] x (Hm/H)

(23)

trong đó

De nồng độ mong muốn của NO pha loãng, [ppm];

C nồng độ của NO pha loãng, [ppm];

Hm nồng độ hơi nước lớn nhất, [%];

H nồng độ thực của hơi nước, [%].

CHÚ THÍCH: Điều quan trọng là đối với kiểm tra này khí span NO chứa nồng độ NO2 nhỏ nhất, vì sự hấp thụ NO2 trong nước không được tính đến trong tính toán sự dập tắt.



8.9.3.3. Sự dập tắt cực đại cho phép

Sự dập tắt cực đại cho phép phải tuân theo các bước sau:

- Đối với tất cả các máy phân tích CLD khô, phải được chứng minh rằng đối với nồng độ hơi nước cao nhất (ví dụ, "% H2Oexp" như được tính toán trong phần tiếp theo), kỹ thuật tách nước đảm bảo độ ẩm của CLD thấp hơn hoặc bằng 5 g nước trên 1 kg không khí khô (hoặc khoảng 0,008 % H2O), tức là 100 % RH ở 3,9 oC và 101,3 kPa. Đặc tính độ ẩm này cũng tương đương với 25 % RH ở 25 oC và 101,3 kPa. Điều này có thể được chứng minh bằng cách đo nhiệt độ tại đầu ra của thiết bị hút ẩm nhiệt, hoặc bằng cách đo độ ẩm tại điểm ngay trước dòng vào CLD. Độ ẩm của khí thải CLD cũng có thể được đo khi dòng vào CLD chính là dòng của thiết bị hút ẩm.

- Đối với đo dập tắt bằng CO2 không pha loãng theo 8.9.3.1: 2 % giá trị toàn thang đo.

- Dập tắt bằng nước theo 8.9.3.2: 3 % giá trị toàn thang đo.

- Đối với phép đo có pha loãng: 2 % tổng cộng của dập tắt bằng nước và bằng CO2.



8.9.4. Sự nhiễu máy phân tích O2

Độ nhạy của máy phân tích PMD do các khí khác với oxy gây ra là tương đối nhẹ. Các đương lượng oxy của các thành phần khí thải chung được nêu trong Bảng 6.



Bảng 6 - Các đương lượng oxy

Khí

Đương lượng oxy

%

Cacbon dioxit, (CO2)

- 0,623

Cacbon monoxit, (CO)

- 0,354

Nitơ oxit, (NO)

+ 44,4

Nitơ dioxit, (NO2)

+ 28,7

Nước, (H2O)

- 0,381

Nồng độ oxy quan sát được phải được hiệu chỉnh bằng công thức sau nếu thực hiện các phép đo chính xác cao.

Nhiễu =

(lượng oxy tương đương % O2 x Nồng độ oxy quan sát được)

(24)

100

Đối với các máy phân tích ZRDO và ECS, nhiễu của máy đo các khí khác oxy gây ra phải được bù theo hướng dẫn của nhà cung cấp máy và quy trình kỹ thuật tin cậy.

8.9.5. Hiệu chỉnh sự kiểm tra nhiễu chéo cho các kênh đo NH3 và N2O khi sử dụng kỹ thuật đo IR (hồng ngoại) và UV (tử ngoại)

8.9.5.1. Quy trình thiết lập sự hiệu chỉnh nhiễu chéo cho các máy phân tích NH3 (phương pháp NDUVR)

Tồn tại nhiễu chéo đối với nitơ oxit (NO) và nitơ dioxit (NO2). Cả hai thành phần phải được đo bằng thiết bị đo và phải áp dụng sự bù trừ đối với giá trị đọc của máy phân tích, nếu nhiễu chéo vượt quá 2 % giá trị toàn thang đo.



8.9.5.2. Kiểm tra nhiễu chéo

Các khí hiệu chuẩn NO và NO2 được cấp vào máy phân tích khi việc bù nhiễu chéo được kích hoạt. Đối với mỗi thành phần phải sử dụng, ít nhất là 5 nồng độ khí hiệu chuẩn khác nhau được phân đều trong dải từ zero đến nồng độ cực đại của khí gây nhiễu để kiểm tra sự bù trừ. Độ lệch cực đại của giá trị đọc NH3 so với giá trị đọc zero phải bé hơn ± 2 % của giá trị toàn dải của dải đo thông dụng. Nếu độ lệch lớn hơn, phải xác lập một đường hiệu chuẩn mới đối với thành phần nhiễu tương ứng và áp dụng cho các giá trị đọc của máy phân tích. Có thể sử dụng các khí đơn cũng như hỗn hợp có chứa 2 hoặc nhiều khí gây nhiễu.



8.9.5.3. Quy trình thiết lập đường hiệu chuẩn nhiễu chéo

8.9.5.3.1. Nhiễu chéo NO

Các khí hiệu chuẩn có ít nhất năm nồng độ NO khác nhau được dàn đều trong dải đo được sử dụng của máy phân tích NO được dẫn vào máy phân tích NH3.

Giá trị danh định của nồng độ NO đưa vào và nồng độ NH3 phải được ghi lại. Sử dụng phương pháp bình phương tối thiểu để thiết lập một hàm tương ứng (ví dụ hàm đa thức), tính toán một đường hiệu chỉnh nhằm bù cho nhiễu chéo NO. Số điểm trên đường hiệu chỉnh này phải cao hơn ít nhất là hai điểm so với số thông số của hàm đa thức (ví dụ, đường đa thức bậc 4 cần ít nhất bảy điểm). Giá trị hiệu chỉnh NH3_được bù trừ = NH3_không được bù trừ - f(NO) cần nằm trong khoảng ± 1 % giá trị toàn thang đo của giá trị đọc khi máy phân tích đọc zero.

8.9.5.3.2. Nhiễu chéo NO2

Quy trình đánh giá nhiễu chéo NO2 cũng tương đương với quy trình cho khí span NO2. Kết quả là đường hiệu chỉnh f(NO2).

Khí hiệu chuẩn dùng để thiết lập các đường cong bù trừ nhiễu chéo phải là hỗn hợp khí đơn. Không cho phép sử dụng hỗn hợp khí có hai hoặc nhiều khí gây nhiễu khi thiết lập các đường cong bù trừ nhiễu chéo.

Tính toán bù trừ cần được thực hiện bằng hệ thống đo:

NH3_được bù trừ = NH3_không được bù trừ - f(N=) - f(NO2)

Sau khi thiết lập xong đường bù trừ, việc bù trừ nhiễu chéo phải được kiểm tra theo quy trình đưa ra trong 8.9.5.2.



8.9.5.4. Quy trình thiết lập sự hiệu chỉnh nhiễu chéo cho máy phân tích N2O (phương pháp NDIR)

Tồn tại các nhiễu chéo đối với CO­2, CO và NO và các nhiễu nhỏ đối với một số hyđrocacbon.



8.9.5.5. Kiểm tra các nhiễu chéo

Các khí hiệu chuẩn đối với CO, CO2, NO và C3H8 được đưa vào bộ phân tích khi bù trừ nhiễu chéo được kích hoạt. Đối với mỗi thành phần phải sử dụng, ít nhất là 5 nồng độ khí hiệu chuẩn khác nhau được phân đều trong dải từ zero đến nồng độ cực đại của khí gây nhiễu để kiểm tra sự bù trừ. Độ lệch cực đại của giá trị đọc NO2 so với giá trị đọc zero phải bé hơn ± 2 % của giá trị toàn thang đo của dải đo thông dụng. Nếu độ lệch lớn hơn phải thiết lập một đường hiệu chuẩn mới đối với thành phần nhiễu tương ứng và áp dụng cho các giá trị đọc của máy phân tích. Có thể sử dụng các khí đơn cũng như hỗn hợp có chứa 2 hoặc nhiều khí gây nhiễu.



8.9.5.6. Quy trình thiết lập các đường hiệu chỉnh nhiễu chéo

8.9.5.6.1. Nhiễu chéo CO

Các khí hiệu chuẩn có ít nhất 5 nồng độ CO khác nhau được dàn đều trong phạm vi đo được sử dụng của máy phân tích CO được dẫn vào máy phân tích N2O.

Giá trị danh định của nồng độ CO đưa vào và nồng độ N2O đo được phải được ghi lại. Sử dụng phương pháp bình phương tối thiểu để thiết lập một hàm tương ứng (ví dụ hàm đa thức) f(CO), tính toán một đường hiệu chuẩn nhằm bù trừ cho nhiễu chéo CO. Số điểm trên đường hiệu chỉnh này phải cao hơn ít nhất là hai điểm so với số thông số của hàm đa thức (ví dụ, đường đa thức bậc 4 cần ít nhất 7 điểm).

Giá trị hiệu chỉnh N2O_được bù trừ = N2O_không được bù trừ - f(CO) cần nằm trong khoảng ± 1 % giá trị toàn thang đo của giá trị đọc khi máy phân tích đọc zero.



8.9.5.6.2. Nhiễu chéo CO2, NO và C3H8

Quy trình tương tự được dùng để đánh giá nhiễu chéo đối với CO2, NO và C3H8. Kết quả lần lượt là các đường hiệu chỉnh f(CO2), f(NO) và f(C3H8).

Khí hiệu chuẩn dùng để thiết lập các đường cong bù trừ nhiễu chéo phải là hỗn hợp khí đơn. Không cho phép sử dụng hỗn hợp khí có hai hoặc nhiều khí gây nhiễu khi thiết lập các đường cong bù trừ nhiễu chéo.

Tính toán bù trừ cần được thực hiện bằng hệ thống đo:

N2Ođược bù trừ = N2Okhông được bù trừ - f(CO2) = - f(CO) - f(NO) - f(C3H8)

Sau khi thiết lập xong đường bù trừ, phải kiểm tra việc bù trừ nhiễu chéo theo quy trình đưa ra trong 8.9.5.5.



8.10. Khoảng thời gian hiệu chuẩn

Các máy phân tích phải được hiệu chuẩn theo 8.5 tối thiểu là ba tháng một lần hoặc khi thực hiện sự sửa chữa hoặc thay đổi có hệ thống có thể ảnh hưởng tới sự hiệu chuẩn.



9. Hiệu chuẩn hệ thống đo hạt

9.1. Quy định chung

Mỗi thành phần của hệ thống phải được hiệu chuẩn thường xuyên để đạt được các yêu cầu về độ chính xác của tiêu chuẩn này. Phương pháp hiệu chuẩn sử dụng được mô tả dưới đây cho các thành phần được quy định trong 7.6 và Điều 17.



9.2. Quy trình hiệu chuẩn

9.2.1. Đo lưu lượng

Sự hiệu chuẩn dụng cụ đo lưu lượng khí hoặc dụng cụ đo dòng phải theo các tiêu chuẩn quốc tế hoặc/và tiêu chuẩn quốc gia.

Nếu lưu lượng khí được xác định bằng đo dòng chênh lệch thì sai số lớn nhất của độ chênh lệch phải sao cho độ chính xác của qmedf­ ­trong phạm vi ± 4 % (cũng có thể xem 17.2.1, các giải thích về máy phân tích khí thải được cho trong các Hình 10 đến Hình 18 dưới đây). Độ chính xác này có thể được tính toán bằng cách lấy căn quân phương của các sai số của mỗi dụng cụ.

9.2.2. Máy phân tích khí thải

Nếu nồng độ CO2 hoặc NOx được dùng để xác định tỷ số pha loãng, các máy phân tích khí thải phải được hiệu chuẩn theo 8.5.5.



9.2.3. Kiểm tra bằng dòng cacbon

Việc kiểm tra bằng dòng cacbon khi sử dụng khí thải thực tế rất được đề cao để phát hiện các vấn đề về đo và điều khiển và đảm bảo sự vận hành chính xác của hệ thống pha loãng một phần. Kiểm tra bằng dòng cacbon cần được thực hiện ít nhất một lần khi lắp một động cơ mới, hoặc thỉnh thoảng có sự thay đổi lớn trong cấu hình của phòng thử.

Động cơ phải được vận hành ở tải trọng và tốc độ cao nhất hoặc bất kỳ chế độ chạy ổn định nào tạo ra 5 % CO2 hoặc lớn hơn. Hệ thống lấy mẫu một phần (không toàn dòng) phải được vận hành với hệ số pha loãng khoảng 15 đến 1.

Nếu thực hiện kiểm tra bằng dòng cácbon, quy trình vận hành phải tuân theo Phụ lục F. Lưu lượng dòng cacbon phải được tính toán theo các phương trình F.1, F.2 và F.3. Tất cả các lưu lượng cacbon phải đảm bảo nằm trong giới hạn 6 %.



9.3. Điều kiện không toàn dòng

Phạm vi của tốc độ khí thải và sự dao động áp suất phải được kiểm tra và điều chỉnh theo yêu cầu của 17.2.1, giải thích về đường ống xả được cho trong các Hình 10 đến 18, nếu thích hợp.



9.4. Khoảng thời gian hiệu chuẩn

Các dụng cụ đo lưu lượng phải được hiệu chuẩn tối thiểu là một năm một lần hoặc khi thực hiện sự sửa chữa hoặc thay đổi có hệ thống có thể ảnh hưởng tới sự hiệu chuẩn.



10. Hiệu chuẩn hệ thống lấy mẫu pha loãng toàn dòng kiểu thể tích không đổi CVS

10.1. Quy định chung

Hệ thống CVS phải được hiệu chuẩn bằng cách sử dụng lưu lượng kế chính xác và thiết bị cản dòng. Dòng chảy đi qua hệ thống phải được đo ở các giá trị đặt cản dòng khác nhau và các thông số điều khiển của hệ thống cũng được đo và liên hệ với dòng chảy.

Có thể sử dụng các kiểu lưu lượng kế khác nhau, ví dụ ống ventury hiệu chuẩn, lưu lượng kế dòng chảy tầng hiệu chuẩn, lưu lượng kế tuabin hiệu chuẩn.

10.2. Hiệu chuẩn bơm thể tích kiểu piston (PDP)

10.2.1. Quy định chung

Tất cả các thông số liên quan đến bơm phải được đo liên tục đồng thời với các thông số liên quan tới venturi hiệu chuẩn nối tiếp với bơm. Lưu lượng hiệu chuẩn (tính theo m3/min tại đầu vào của bơm, áp suất tuyệt đối và nhiệt độ) phải được biểu diễn trên đồ thị với hàm tương quan là giá trị của một tổ hợp các thông số của bơm. Phương trình tuyến tính thể hiện mối quan hệ giữa lưu lượng bơm và hàm tương quan phải được xác định. Nếu một hệ thống CVS có dẫn động nhiều tốc độ thì phải thực hiện sự hiệu chuẩn cho mỗi phạm vi tốc độ được sử dụng.

Độ ổn định nhiệt độ phải được duy trì trong quá trình hiệu chuẩn.

Rò rỉ trong tất cả các đầu nối và đường ống nối giữa venturi hiệu chuẩn và bơm CVS phải được duy trì dưới 0,3 % của điểm lưu lượng thấp nhất (cản dòng cao nhất và điểm tốc độ của PDP thấp nhất).



10.2.2. Phân tích dữ liệu

Lưu lượng không khí (Qs) tại mỗi điểm đặt cản dòng (ít nhất là sáu điểm đặt) phải được tính toán theo tiêu chuẩn m3/min từ dữ liệu lưu lượng kế khi dùng phương pháp do nhà sản xuất đưa ra. Lưu lượng không khí phải được chuyển đổi về lưu lượng bơm (V) tính theo m3/r ở áp suất và nhiệt độ tuyệt đối tại cửa vào của bơm như sau:





(25)

trong đó

Qs lưu lượng không khí ở điều kiện chuẩn (101,3 kPa, 273 K), [m3/s];

T nhiệt độ tại cửa vào của bơm [K];

PA áp suất tuyệt đối tại cửa vào [kPa];

n tốc độ quay của bơm [r/s].

Để tính đến sự tương tác của các biến thiên áp suất tại bơm và mức độ trượt của bơm, hàm tương quan (X0) giữa tốc độ bơm, chênh lệch áp suất giữa đầu ra và đầu vào bơm và áp suất tuyệt đối đầu ra của bơm phải được tính toán như sau:





(26)

trong đó

pp là sự chênh lệch áp suất giữa đầu vào và đầu ra của bơm [kPa];

pA áp suất tuyệt đối tại cửa ra của bơm [kPa].

Thực hiện phương pháp bình phương tối thiểu tuyến tính để tạo ra phương trình hiệu chuẩn như sau:



V0 = D0 - m x (X0)

(27)

D0 và m lần lượt là hằng số và hằng số góc của các đường hồi qui.

Đối với hệ thống CVS có nhiều tốc độ, các đường hiệu chuẩn được tạo ra đối với các phạm vi lưu lượng bơm khác nhau phải gần như song song với nhau, và hằng số D0 phải tăng khi phạm vi lưu lượng bơm giảm.

Các giá trị tính toán được từ phương trình phải nằm trong giới hạn ± 0,5 % của giá trị đo của V0. Các giá trị m phải khác nhau đối với mỗi loại bơm. Dòng hạt vào theo thời gian sẽ dẫn tới độ trượt của bơm giảm, được phản ánh bởi các giá trị m thấp hơn. Do đó, phải thực hiện việc hiệu chuẩn khi bơm mới hoạt động sau một khoảng thời gian bảo dưỡng chính và nếu việc kiểm tra toàn hệ thống chỉ ra sự thay đổi của mức độ trượt.

10.3. Hiệu chuẩn venturi dòng tới hạn (CFV)

10.3.1. Quy định chung

Hiệu chuẩn CFV được dựa trên phương trình dòng chảy đối với venturi dòng tới hạn. Lưu lượng khí (Qs) là hàm của áp suất và nhiệt độ đầu vào:





(28)

trong đó

kv là hệ số hiệu chuẩn;

pA là áp suất tuyệt đối tại cửa vào venturi [kPa];

T là nhiệt độ tại cửa vào của venturi [K].



10.3.2. Phân tích dữ liệu

Lưu lượng không khí (Qs) tại các điểm đặt cản dòng (ít nhất có sáu điểm đặt) phải được tính toán theo m3/min tiêu chuẩn từ dữ liệu của lưu lượng kế khi dùng phương pháp quy định của nhà sản xuất. Phải tính toán hệ số hiệu chuẩn từ các dữ liệu hiệu chuẩn đối với mỗi điểm đặt như sau:





(29)

trong đó

Qs là lưu lượng không khí ở điều kiện chuẩn (101,2 kPa, 273 K) [m3/s];

T là nhiệt độ cửa vào venturi [K];

pA là áp suất tuyệt đối tại cửa vào venturi.

Để xác định phạm vi của dòng chảy giới hạn, kv phải được biểu diễn bằng hàm của áp suất cửa vào venturi. Đối với dòng chảy giới hạn (tiết lưu) kv gần như là hằng số. Do áp suất giảm (độ chân không tăng), venturi trở nên không bị bóp dòng và kv­ giảm, điều này có nghĩa là CFV hoạt động ngoài phạm vi cho phép.

Đối với ít nhất là tám điểm trong vùng dòng giới hạn, phải tính toán giá trị trung bình của kv và độ lệch chuẩn. Độ lệch chuẩn không được phép vượt quá ± 0,3 % giá trị trung bình của kv.



10.4. Hiệu chuẩn venturi dưới âm (SSV)

10.4.1. Quy định chung

Hiệu chuẩn SSV được dựa trên phương trình dòng chảy đối với venturi dưới âm. Lưu lượng khí (QSSV) là hàm của áp suất và nhiệt độ tại cửa vào, độ tụt áp giữa đầu vào SSV và họng của nó và được tính như sau:





(30)

trong đó

A0 là tập hợp của các hằng số và chuyển đổi đơn vị

= 0,006111 theo các đơn vị SI ;

d là đường kính họng của SSV [m];

Cd là hệ số xả của SSV;

pA là áp suất tuyệt đối tại đầu vào venturi [kPa];

T là nhiệt độ tại cửa vào venturi [K];

rx là tỷ số của họng SSV và áp suất tĩnh tuyệt đối, tại cửa vào, rx = 1 - (p/pA);

ry là tỷ số của d và đường kính trong ống vào (D), ry = d/D.

10.4.2. Phân tích dữ liệu

Lưu lượng không khí (qvSSV) tại mỗi điểm đặt cản dòng (ít nhất là 16 điểm đặt) phải được tính toán theo m3/min tiêu chuẩn từ dữ liệu lưu lượng kế khi sử dụng phương pháp do nhà sản xuất quy định. Hệ số xả (Cd) phải được tính toán từ dữ liệu hiệu chuẩn đối với mỗi điểm đặt như sau:





(31)

trong đó

qvSSV là lưu lượng dòng khí ở điều kiện chuẩn (103,3 kPa, 273 K) [m3/min];

T là nhiệt độ tại cửa vào venturi [K];

d là đường kính họng SSV [m];

rx là tỷ số của họng SSV và áp suất tĩnh tuyệt đối tại cửa vào, rx = 1 - (p/pA);

ry là tỷ số của d và đường kính trong ống vào (D), ry = d/D.

Để xác định phạm vi của dòng dưới âm, Cd phải được lập thành đồ thị là hàm của số Reynold (Re), tại họng SSV. Re tại họng của SSV được tính toán theo công thức sau:



(32)

trong đó

A1 là tập hợp của các hằng số và các chuyển đổi đơn vị;

= 25,51152

qvSSV là lưu lượng dòng khí ở điều kiện chuẩn (103,3 kPa, 273 K) [m3/min];

d là đường kính họng venturi, [m];

 là độ nhớt tuyệt đối hoặc động học của khí được tính toán theo công thức sau:



, kg/m-s

(33)

trong đó

b là hằng số thực nghiệm = 1,458 x 106 kg/msK1/2;

s là hằng số thực nghiệm = 110,4 K.

Do QSSV là thông số đầu vào của công thức Re, phải bắt đầu tính toán bằng ước lượng giá trị ban đầu của QSSV hoặc Cd của venturi, và lặp lại cho tới khi QSSV hội tụ. Phương pháp hội tụ phải đảm bảo độ chính xác 0,1 % của một điểm đo hoặc tốt hơn.

Đối với ít nhất là mười sáu điểm trên khu vực dòng dưới âm, các giá trị tính toán Cd từ phương trình đường hiệu chuẩn gần đúng phải nằm trong khoảng ± 0,5 % của Cd đo được đối với mỗi điểm hiệu chuẩn.



tải về 0.85 Mb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5   6   7   8   9   ...   13




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương