TIÊu chuẩn ngành 22 tcn 274-2001



tải về 0.89 Mb.
trang9/12
Chuyển đổi dữ liệu11.08.2016
Kích0.89 Mb.
#17170
1   ...   4   5   6   7   8   9   10   11   12




Cột số

Giải

2

Do kỹ sư thiết kế ước tính (Bước 2)

3

Dùng giá trị ước tính ở cột 2 cùng với Hình 9.2 để xác định tỉ lệ mất khả năng phục vụ tổng cộng do hiện tượng trương nở và đông trướng (Bước 3)

4

Trừ tỉ lệ mất khả năng phục vụ do môi trường (Cột 3) từ tỉ lệ mất khả năng phục vụ tổng cộng để xác định tỉ lệ mất khả năng phục vụ tương ứng do giao thông

5

Được xác định từ Hình 9.9, giữ lại toàn bộ hằng số đầu vào (trừ việc sử dụng tỉ lệ mất khả năng phục vụ do giao thông từ Cột 4) và áp dụng đồ thị tra ngược (Bước 5)

6

Dùng lưu lượng giao thông trong cột 5, ước tính thời gian phục vụ từ Hình 9.1 (Bước 6)

Bước 2. Lựa chọn một thời gian phục vụ thử dần theo các điều kiện trương nở dự báo trước và điền vào cột 2. Giá trị này nên nhỏ hơn thời gian phục vụ lớn nhất có thể ứng với chỉ số kết cấu mặt đường ban đầu đã lựa chọn. Nói chung, nếu tỉ lệ mất khả năng phục vụ do môi trường càng lớn thì thời kỳ phục vụ càng ngắn.

Bước 3. Dùng đồ thị quan hệ giữa tỉ lệ mất khả năng phục vụ tích lũy do môi trường với thời gian trình bày trong Mục 2.1.4 (Hình 9.2 được dùng như một ví dụ), ước tính tỉ lệ mất khả năng phục vụ tổng cộng do trương nở tính được cho khoảng thời gian thử dần từ Bước 2, rồi điền vào Cột 3.

Bước 4. Trừ tỉ lệ mất khả năng phục vụ do môi trường này (Bước 3) từ tỉ lệ mất khả năng phục vụ tổng cộng mong muốn (4.4 – 2.5 = 1.9 dùng trong ví dụ) để xác định tỉ lệ mất khả năng phục vụ do giao thông. Điền kết quả trong Cột 4.



Bước 5. Dùng Hình 9.9 để ước tính lưu lượng xe 80kN ESAL tích lũy cho phép tương ứng với tỉ lệ mất khả năng phục vụ do giao thông xác định ở Bước 4 và điền vào Cột 5. Phải sử dụng cùng mức độ tin cậy, cùng mô đun đàn hồi hữu hiệu của nền đường cùng chỉ số kết cấu ban đầu khi áp dụng sơ đồ kết cấu mặt đường mềm để ước tính lưu lượng giao thông cho phép này.

Bước 6. Ước tính số năm tương ứng để đạt được lưu lượng xe 80kN ESAL tích lũy (xác định trong Bước 5) và điền vào Cột 6. Cần phải sử dụng kết hợp với đường quan giữa hệ giữa lưu lượng tích lũy theo thời gian cho trong Mục 9.3 (Hình 9.1 được dùng như một ví dụ).

Bước 7. So sánh thời gian phục vụ thử dần với giá trị tính được ở Bước 6. Nếu chênh lệch lớn hơn 1 năm, tính giá trị trung bình của chúng và coi như là giá trị thử dần để bắt đầu bước lặp tiếp theo (quay lại Bước 2). Nếu khoảng cách nhỏ hơn 1 năm, thì đạt được sự tương đối và giá trị trung bình nói trên được coi là khoảng thời gian phục vụ dự báo của kết cấu mặt đường ban đầu tương ứng với SN đã chọn trước. Trong ví dụ, sự tương đồng đạt được sau ba lần lặp lại và khoảng thời gian phục vụ dự báo là 8 năm.

Cơ sở cho quá trình lặp lại này hoàn toàn như cách ước tính khoảng thời gian phục vụ của bất kỳ lớp phủ tăng cường nào sau đó. Điểm khác nhau chính trong thực tế áp dụng là (1) phương pháp luận thiết kế lớp phủ tăng cường nêu trong chương thiết kế sửa chữa cải tạo mặt đường được dùng để ước tính thời gian phục vụ của lớp phủ và (2) sự mất khả năng phục vụ do trương nở dự báo sao khi làm lớp phủ tăng cường bắt đầu và tiếp diễn kể từ thời điểm lớp phủ tăng cường được thi công.

9.9.6. LỰA CHỌN BỀ DÀY LỚP

Khi chỉ số kết cấu thiết kế (SN) cho một kết cấu mặt đường ban đầu được xác định, cần đưa ra một tập hợp các bề dày lớp kết cấu để nếu tổ hợp lại sẽ cho khả năng chịu tải tương ứng với SN thiết kế. Phương trình sau đây đưa ra cơ sở để chuyển đổi SN sang bề dày thực tế các lớp bề mặt, lớp móng trên và lớp móng dưới:



Trong đó:



a1, a2, a3

- hệ số lớp tương ứng với lớp bề mặt lớp móng trên và lớp móng dưới (xem Mục9.5.3)

D1, D2, D3

- bề dày thực tế (đo bằng inche) tương ứng của lớp bề mặt, lớp móng trên và lớp móng dưới, và

m2, m3

- các hệ số thoát nước tương ứng cho các lớp móng trên và móng dưới (xem Mục 9.6.1).

(Ghi chú: bề dày các lớp (D1, D2, D3) có thể được tính trực tiếp ra cm bằng cách nhân SN với 2.54, hoặc các giá trị đơn lẻ của D có thể quy đổi từ inches ra cm bằng cách nhân mỗi D với 2,54).

Phương trình của SN không phải chỉ có lời giải duy nhất: tức là, có nhiều tổ hợp các chiều dày lớp cùng thỏa mãn lời giải. Bề dày của các lớp mặt đường mềm cần được lấy tròn đến centimét. Khi lựa chọn các giá trị thích hợp cho bề dày lớp, cần xét tới hiệu quả kinh tế cùng với các ràng buộc về thi công và duy tu sửa chữa để tránh khả năng đưa ra một thiết kế phi thực tế. Từ quan điểm hiệu quả kinh tế, nếu tỉ lệ giữa chi phí cho lớp 1 và lớp 2 nhỏ hơn tỉ lệ tương ứng của các hệ số lớp nhân với hệ số thoát nước, thì khi đó sẽ có được một thiết kế tối ưu về kinh tế nếu lấy bề dày lớp móng trên nhỏ nhất. Nói chung là phi thực tế và không kinh tế nếu lấy bề dày các lớp bề mặt, lớp móng trên và lớp móng dưới nhỏ hơn bề dày tối thiểu nào đó, nên Bảng sau đây đưa ra các bề dày thực tế nhỏ nhất đối với mỗi lớp kết cấu mặt đường:



Bảng 9.7. Bề dày nhỏ nhất của các lớp (cm)

Lưu lượng giao thông (theo ESAL)

Bê tông nhựa

Móng trên bằng cấp phối

Nhỏ hơn 50.000

50.001 – 150.000

150.001 – 500.000

500.001 – 2.000.000

2.000.001 – 7.000.000

Lớn hơn 7.000.000



2.5 (hoặc xử lý bề mặt)

5

7



8

9

10



10

10

10



15

15

15



Bề dày hiệu quả của lớp xử lý bề mặt cần được kết hợp với lớp móng trên. Phần chiều dày được xử lý của lớp mặt có thể được bỏ qua khi tính SN, nhưng ảnh hưởng của nó đối với các tính chất của lớp móng trên và lớp móng dưới có thể là lớn do giảm sự thâm nhập nước bề mặt.

D*1

SN*1 = a1D*1 ≥ SN1

D*2

SN*1 + SN*2 ≥ SN2

D*3

1) a.D.m và SN như đã được định nghĩa và là giá trị yêu cầu nhỏ nhất

2) Dấu sao ở D và SN biểu thị rằng nó là giá trị thực được sử dụng, giá trị đó phải lớn hơn hoặc bằng giá trị yêu cầu.



Hình 9.10. Trình tự xác định chiều dày các lớp sử dụng phương pháp phân tích theo từng lớp

9.9.7. TÍNH TOÁN THIẾT KẾ PHÂN LỚP

Cần nhận thấy rằng, đối với mặt đường mềm, kết cấu là một hệ các lớp và cần được thiết kế theo kết cấu lớp. Kết cấu cần được thiết kế theo các nguyên tắc cho trong Hình 9.10. Đầu tiên, chỉ số kết cấu yêu cầu trên lớp đất nền đường cần được tính toán. Tương tự, chỉ số kết cấu yêu cầu trên lớp móng trên và lớp móng dưới cũng cần được tính toán bằng cách sử dụng các giá trị cường độ của chúng. Bằng cách xác định sự khác nhau giữa các chỉ số kết cấu đã tính nằm trên mỗi lớp, có thể tính được bề dày cho phép lớn nhất cho mỗi lớp đã cho. Ví dụ, chỉ số kết cấu cho phép lớn nhất cho vật liệu lớp móng dưới sẽ bằng chỉ số kết cấu yêu cầu nằm trên lớp móng dưới trừ đi từ chỉ số kết cấu yêu cầu nằm trên lớp đất nền. Bằng cách tương tự, có thể tính được chỉ số kết cấu cho các lớp khác. Bề dày của các lớp tương ứng sau đó được xác định như đã chỉ ra trên Hình 9.10.

Cần lưu ý rằng quy trình này không áp dụng để xác định SN yêu cầu nằm trên vật liệu lớp móng dưới hoặc lớp móng trên có mô đun lớn hơn 276 MPa. Đối với các trường hợp như vậy, bề dày lớp của vật liệu cho lớp có mô đun “cao” cần được xác định dựa trên hiệu quả kinh tế và xét tới bề dày thực tế nhỏ nhất.

(1) Các hệ số an toàn kết cấu. Sai số thi công cho phép trong chỉ tiêu kỹ thuật có thể gây ra hụt bề dày mặt cắt kết cấu. Để bù lại sự thiếu hụt này, một hệ số an toàn được đưa ra bằng cách tăng bề dày thiết kế của mặt đường. Đối với các kết cấu bao gồm các lớp móng trên và/hoặc móng dưới, một hệ thống an toàn bằng 30 mm được cộng với bề dày yêu cầu của lớp AC. Do việc áp dụng hệ số an toàn không có ý định làm tăng SN tổng cộng của kết cấu, nên cần giảm bề dày của lớp móng dưới một lượng bằng bề dày bù này. Nếu không có lớp móng dưới, thì giảm bề dày của lớp móng trên. Trong bất kỳ trường hợp nào, không được giảm bề dày lớp xuống nhỏ hơn bề dày nhỏ nhất cho phép. Đối với những kết cấu mà cả bề dày đều bằng AC thì một hệ số an toàn bằng 15 mm được thêm vào bề dày yêu cầu của AC. Khi xác định hệ số an toàn thích hợp để thêm vào, ACB và ATPB cần được xem như là một phần của lớp AC. Toàn bộ chiều dày lớp AC sẽ vượt bề dày tính toán yêu cầu một lượng bằng hệ số an toàn bởi vì không có các lớp nằm dưới để điều chỉnh.

(2) Các nguyên tắc cơ bản để thiết kế mặt đường mềm. Khi thiết kế mặt cắt kết cấu mặt đường mềm cần áp dụng các nguyên tắc cơ bản sau:

(a) Vật liệu lớp móng trên và lớp móng dưới khác với ATPB cần có bề dày tối thiểu như cho trong Bảng 9.6. Nếu bề dày tính toán của vật liệu lớp móng trên và lớp móng dưới nhỏ hơn bề dày tối thiểu mong muốn thì sẽ hoặc là tăng bề dày lên bằng bề dày tối thiểu mà không thay đổi bề dày của các lớp bên trên, hoặc loại bỏ lớp này đi và tăng bề dày lớp AC hoặc lớp móng trên để bù lại.

(b) Các lớp móng trên rỗng đã được xử lý được trải dưới mặt đường mềm theo bề dày tiêu chuẩn bằng 75mm nếu là ATPB hoặc 105mm nếu là CTPB.

(c) Quy trình thiết kế đưa ra bề dày cho phép tối thiểu của AC cho các điều kiện của dự án. Bề dày này có thể tăng lên khi thích hợp để giảm thiểu chi phí thi công, giảm thời gian thi công, cân bằng cao trình lớp với các làn cũ bên cạnh, giảm số lớp, v.v…

(d) Bề dày của các lớp kết cấu khác được xác định theo quy trình đã nêu có thể được điều chỉnh nhằm phù hợp với thực tế thi công và giảm chi phí.

(e) Sự thuận lợi trong thi công và/hoặc khả năng cung cấp nguyên vật liệu ở một vài thời điểm có thể tạo điều kiện thuận lợi cho nhà thầu thay lớp AS bằng cách tăng lớp móng trên. Việc thay thế này được xét tới khi bề dày yêu cầu của AS nhỏ hơn 105mm hoặc nếu lý giải được là có hiệu quả kinh tế.

9.9.8. THIẾT KẾ KẾT CẤU LỀ ĐƯỜNG

Thiết kế kết cấu lề đường dựa trên phương pháp giống như được mô tả cho phần đường xe chạy. Việc thiết kế được căn cứ vào 2% của ESAL của làn kề cạnh. Ở đường làm mới, nếu việc chuyển lề đường thành làn xe chạy trong phạm vi tuổi thọ thiết kế của mặt đường thì lề đường cần rộng 3.5m và kết cấu phải giống như kết cấu của làn xe chạy kề cạnh. Việc chuyển lề đường thành một phần của làn xe chạy chỉ được thực hiện khi đó là giải pháp có thể cuối cùng nhằm làm tăng khả năng khai thác. Giải pháp hợp lý hơn là mở rộng vĩnh cửu phù hợp các tiêu chuẩn thiết kế.

Nếu có quyết định chuyển lề đường hiện có thành một phần của làn xe chạy, cần phải nghiên cứu khả năng phù hợp của vật liệu tại chỗ. Điều kiện của lề đường hiện có phải được đánh giá về độ gồ ghề, nứt bề mặt, bong bật v.v…

Phần lẻ chuyển đổi này phải cho một làn đường chuyển đổi phải phù hợp về mặt kết cấu trong vòng 10 năm tới. Điều này nhằm loại trừ hoặc làm giảm thiểu việc sửa chữa hoặc cải tạo liên tục trong khoảng thời gian tương đối ngắn do cường độ kết cấu không thích hợp và sự xuống cấp của AC hiện có khiến nó trở nên giòn do lão hóa, dẫn đến chất lượng xe chạy kém. Tại những đoạn dốc (lớn hơn 4%), khả năng cho xe tải chạy chậm lấn sang lề đường cần được xét tới. Nếu lượng lấn sang lề đường giả thiết vượt quá 2% của ESAL, mặt cắt kết cấu của lề đường cần được thiết kế tương ứng. Do thường là không có điểm gầy tại mặt điểm tiếp nối mặt đường và lề đường, SN tổng cộng cho kết cấu lề đường thường lớn hơn yêu cầu nhờ bề dày lớp móng trên vượt yêu cầu. Mặt cắt kết cấu có thể được thiết kế có hoặc không có lớp AS phụ thuộc vào chi phí ban đầu.

Các lề đường nằm giữa thuộc các đường cao tốc có phân cách cần được trải thảm với một bề dày AC đồng nhất bằng 60mm lên trên lớp AB mà không cần tính toán thiết kế, trừ khi bị bắt buộc phải cho xe chạy.

Các lề giữa rộng 4.2m hoặc hẹp hơn thuộc các mặt cắt 4 làn không phân chia cần được trải thảm với một bề dày AC đồng nhất bằng bề dày AC của mặt cắt kết cấu đường xe chạy.

9.9.9. THIẾT KẾ KẾT CẤU CỦA LÀN VƯỢT DỐC

Thiết kế kết cấu làn vượt đoạn dốc bằng AC dựa trên phương pháp giống như được sử dụng cho phần đường xe chạy. Những quy định về thoát nước nhanh và tốt của kết cấu rất quan trọng, như được trình bày trong Chương 6, cả cho đoạn vượt dốc cũng như các làn xe chính. Tuy nhiên, việc đưa hệ thống thoát nước vào mặt cắt kết cấu làn vượt dốc đôi khi có thể tạo ra các sự cố thoát nước như đọng nước ở phân thấp của làn vượt dốc xuống đi vào nút giao thông địa phương thuộc vùng bằng phẳng. Với những tình huống như vậy, khi không có giải pháp kinh tế nhằm cung cấp cửa thoát mưa, cần đánh giá thật cẩn thận về các điều kiện địa phương và xem xét trong việc xác định có cần làm hệ thống thoát nước trong mỗi mặt cắt kết cấu làn vượt dốc bằng AC không.

CHƯƠNG 10. KHÔI PHỤC KẾT CẤU MẶT ĐƯỜNG

10.1. GIỚI THIỆU

Trên toàn đất nước mặt đường đang ở những mức độ hư hỏng khác nhau và cần phải duy tu bảo dưỡng hoặc sửa chữa, ngăn ngừa các hư hỏng đó. Có thể cần phải tiến hành công tác bảo dưỡng hoặc cải tạo nhằm mục đích khôi phục chất lượng xe chạy và giảm thiểu chi phí bảo dưỡng không cần thiết. Cần phải tiến hành công tác cải tạo để khôi phục chất lượng xe chạy và tình trạng đồng nhất của kết cấu. Vật liệu, phương pháp và các chiến lược cải tạo mới đang tiếp tục được nghiên cứu và vì đây là một lĩnh vực công nghệ thay đổi một cách nhanh chóng nên những hướng dẫn về phương pháp cải tạo đường được trình bày trong chương trình này không có ý định phủ nhận những phương pháp thích hợp khác. Các quyết định cho từng dự án sẽ dựa trên đánh giá kỹ thuật về nhiều mặt, gồm có việc xem xét và phân tích một cách kỹ lưỡng tất cả các nhân tố thích hợp đối với mỗi dự án.



10.2. PHẠM VI

Mục đích chính nhằm trình bày cơ sở chung của một phương pháp được sử dụng để lựa chọn những chiến lược cải tạo chủ yếu cho một dự án. Cần phải hiểu rằng các hoạt động cải tạo chủ yếu trình bày trong Chương 10 không chỉ bao gồm trình tự thực hiện kết cấu của lớp phủ (Chương 11), mà còn bao gồm những phương pháp cải tạo quan trọng khác (Chương 12). Tuy nhiên, chúng tôi không hướng dẫn sử dụng các lớp phủ làm phương tiện để tăng cường khả năng chống trượt của mặt đường.

Nguyên lý chung của phương pháp cải tạo đường dựa trên cơ sở các khái niệm về sự làm việc – khả năng phục vụ - thiết kế của AASHTO cho công tác thiết kế mặt đường mới trình bày trong Chương 9. Cơ cấu dựa vào khả năng phục vụ này cho phép phân tích một giải pháp kết hợp giữa thiết kế - cải tạo suốt thời kỳ phân tích đã xác định trước. Chính điều này lại cho phép triển khai một cơ cấu toàn diện để dự tính chi phí cho chu trình tuổi thọ của bất kỳ một giải pháp nào trong suốt thời kỳ phân tích. Giải pháp này rất cần thiết nếu các nguyên tắc kinh tế được sử dụng như một tiêu chuẩn quyết định để chọn ra một phương pháp cải tạo ưu thế hơn trong số một vài giải pháp (có tính khả thi về mặt kỹ thuật) đã đề xuất.

Chương 10 và 11 được trình bày như một giải pháp độc lập, người sử dụng sẽ nhanh chóng nhận ra là cần phải sử dụng trực tiếp những phương pháp trình bày trong Chương 9. Điều này là cần thiết vì trình tự kết cấu của lớp phủ trình bày ở trong Chương 9 đòi hỏi những thiết kế kết cấu mới là một bộ phận không thể tách rời trong quá trình phân tích về cải tạo đường.

Việc phân tích kết cấu lớp phủ trình bày ở Chương 11 phần nào dựa trên hai khái niệm tương đối mới. Trước tiên, vai trò của thí nghiệm độ võng động không phá hủy kết cấu được nhấn mạnh như một công cụ chủ yếu để đánh giá các đặc điểm của mặt đường hiện tại. Hơn nữa, khái niệm về tuổi thọ còn lại của mặt đường được vận dụng trực tiếp trong phương pháp luận thiết kế lớp phủ.

Cuối cùng, Chương 10 trình bày phương pháp tổng thể về cải tạo mặt đường. Người sử dụng nên lưu ý rằng triết lý của phương pháp luận sẽ bao trùm hơn so với những giải pháp đã được định nghĩa đầy đủ trong Chương 9. Nguyên nhân chính là do có sự khác biệt đáng kể giữa các quan hệ thiết kế - khai thác và kiến thức về khai thác – cải tạo. Trong khi các giải pháp phân tích đối với các phần việc của phương pháp luận cải tạo được trình bày, người kỹ sư phải nhận thấy rằng không thể xác định một cách chính xác giải pháp cải tạo tối ưu từ một mô hình phân tích khắt khe. Tuy nhiên, cũng không nên ngăn cản người sử dụng áp dụng phương pháp này mà nên khuyến khích họ sử dụng mọi thiết bị (công cụ) sẵn có trong tay họ để xác định nguyên nhân gây ra sự cố, tìm ra những giải pháp có hiệu quả kinh tế, sau đó dựa trên những kinh nghiệm sâu rộng về kỹ thuật để chọn ra phương án cải tạo thích hợp hơn.



10.3. CÁC GIẢ ĐỊNH VÀ CÁC HẠN CHẾ

Bởi vì phương pháp kết cấu lớp phủ phần nào căn cứ vào các khái niệm khả năng phục vụ - thiết kế AASHTO của Chương 9, những giả định và giới hạn liên quan đến phương pháp thiết kế mặt đường mới sẽ được áp dụng cho phần lớp phủ của Chương 10. Phương pháp cơ bản sử dụng cho tất cả các loại mặt đường hiện tại và lớp phủ dựa vào “phương pháp lớp phủ do thiếu chiều dày” (tức là chiều dày hiện tại không đáp ứng được lưu lượng giao thông dự kiến trong tương lai). Điều này đòi hỏi những đánh giá về hệ thống mặt đường hiện tại chủ yếu thông qua việc sử dụng thí nghiệm không phá hủy kết cấu để xác định khả năng có của kết cấu mặt đường hiện tại trước khi rải lớp phủ.

Qua nhiều năm áp dụng vào thực tế phương pháp thiếu chiều dày, người ta nhận thấy phương pháp này thiếu một số thẩm định tại hiện trường về dự báo sự làm việc thiết kế khi so sánh với trình tự thiết kế mặt đường mới. Ngoài ra, trong khi tình trạng sử dụng/phân tích các số liệu độ võng NDT được đánh giá là tốt, những thay đổi và những tiến bộ trong công nghệ NDT đang thường xuyên nâng cao độ chính xác của phương pháp này trong thực tế. Khi xem xét công tác cải tạo trong tương lai, phương pháp cơ bản trình bày trong Chương 10 được xem là những nguyên tắc cơ bản để đánh giá kết cấu lớp phủ trong tương lai. Chương 10 cũng trình bày việc áp dụng các phương pháp cải tạo chủ yếu, ngoài phương pháp sử dụng lớp phủ.

Trình tự thiết kế lớp phủ trong mặt đường mềm ở đây được xem là đại diện cho việc áp dụng công nghệ cao vào trong công tác cải tạo mặt đường có cường độ kết cấu không đảm bảo hoặc chiều dày không thích hợp cho tải trọng xe, gây ra hiện tượng lún không phục hồi. Đối với các mặt đường mà cơ chế hư hỏng chủ yếu là nứt mỏi không có biến dạng vĩnh viễn, các trình tự thiết kế theo kinh nghiệm cơ học hoặc theo kinh nghiệm khác dựa vào thí nghiệm không phá hủy kết cấu có thể phù hợp hơn.



10.4. CÁC LOẠI HƯ HỎNG KẾT CẤU MẶT ĐƯỜNG THÔNG THƯỜNG

Việc đánh giá kỹ thuật, chủ yếu dựa theo kinh nghiệm trong thiết kế, thi công, vật liệu thi công mặt đường và công tác bảo dưỡng mặt đường là cần thiết nhằm xác định các loại hư hỏng mặt đường và nguồn gốc những hư hỏng đó. Khi có kinh nghiệm trong các lĩnh vực này, một người quan sát, nhìn chung, có thể xác định hư hỏng xảy ra chủ yếu ở lớp nào: mặt đường, lớp móng trên và/hoặc lớp móng dưới hoặc trong lớp nền đường. Tại những đoạn đường mà những biến dạng trên mặt phần xe chạy không quan sát bằng mắt thường được thì nhìn chung hư hỏng chỉ xảy ra ở lớp mặt đường.

Trong mặt đường bê tông asphalt (AC), hư hỏng trong lớp móng trên hoặc lớp móng dưới có thể quan sát bằng mắt thường nếu trên bề mặt AC bị lún theo vệt bánh xe hoặc nứt thành lưới. Mặt khác, vết hằn sâu cũng chứng tỏ là mặt đường bê tông asphalt không ổn định. Những vết nứt ngoằn nghèo và độ lún không đồng đều trên mặt đường có thể là do lớp dưới mặt đường cũng bị hỏng. Những biến đổi của vật liệu, môi trường và các yếu tố khác cũng ảnh hưởng đến khả năng làm việc của kết cấu mặt đường. Do đó việc triển khai các quy tắc nhanh và mạnh đối với công tác cải tạo mặt đường trở nên vô cùng khó khăn. Vì vậy, người thiết kế nên dựa vào kinh nghiệm, sự đánh giá và hướng dẫn của Kỹ sư đang công tác trong các lĩnh vực kỹ thuật có tính chức năng phù hợp như thiết kế, thi công, vật liệu và bảo dưỡng mặt đường trong khu vực địa lý của dự án. Thí nghiệm độ võng mặt đường AC và các thí nghiệm khác có thể được sử dụng để khẳng định những đánh giá đã được đưa ra. Những tham luận dưới đây về các dạng hư hỏng của mặt đường bê tông nhựa chủ yếu là những hư hỏng thường gặp đối với loại mặt đường này ở California. Các định nghĩa ngắn gọn về các kiểu hư hỏng này được trình bày trong Chương 12.

10.5. CÁC KIỂU HƯ HỎNG CỦA MẶT ĐƯỜNG BÊ TÔNG ASPHALT

(1) Nứt thành lưới. Nứt thành lưới là một chuỗi của các khe nứt có liên quan đến nhau hoặc kết hợp với nhau mà nguyên nhân gây ra bởi hiện tượng mỏi của bề mặt AC dưới tác động của tải trọng trùng phục. Vết nứt bắt đầu tại đáy của mặt đường AC nơi biến dạng do tải trọng bánh xe gây ra vượt quá biến dạng cho phép và ứng suất kéo tại đây cao nhất. Những vết nứt này thường liên quan đến tải trọng. Trước tiên, những vết nứt xuất hiện như những vết nứt dọc đơn hoặc một dãy vết nứt song song dưới các vệt bánh xe. Dưới tác dụng của tải trọng các vết nứt sẽ nối kết nhau tạo thành những mảnh nhiều mặt, góc sắc nhọn, sẽ phát triển theo kiểu tương tự nhau như da cá sấu. Nứt thành lưới được phân thành 3 loại sau:

● Loại A. Các vết nứt đơn ban đầu hoặc các vết nứt dọc song song dưới các vệt bánh xe.

● Loại B. Các vết nứt mỏi liên kết với nhau dưới các vệt bánh xe.

● Loại C. Các loại nứt mỏi khác tại những chỗ cục bộ với chiều dày lớp bề mặt hoặc lớp móng trên quá mỏng. Nứt thành lưới loại C nói chung xuất hiện bên ngoài các vệt bánh xe. Nguyên nhân việc xuất hiện vết nứt rất dễ nhận thấy, chẳng hạn vết nứt ở rìa là do mở rộng mặt đường với chiều dày của lớp mặt hoặc lớp móng trên quá mỏng. Các nguyên nhân khác gây ra nứt thành lưới loại C đó là các túi bùn ở lớp móng trên, hiện tượng phụt nước và xuống cấp tại các vết nứt phản hồi (nứt ngược từ dưới lên).



(2) Nứt khối. Các vết nứt khối là các đa giác liên kết với nhau trên diện rộng với các góc sắc nhọn. Các vết nứt này nói chung do sự hóa cứng và co ngót của nhựa và/hoặc vết nứt phản hồi từ lớp móng gia cố xi măng (CTB). Các khối có thể có diện tích từ 0.1 m2 đến 2.5 in2. Loại hư hỏng này không liên quan đến tải trọng, mặc dù tải trọng có thể làm tăng độ nghiêm trọng của các vết nứt đơn. Nứt khối thường xuất hiện trên một diện rộng ở mặt đường, nhưng có thể chỉ xuất hiện ở khu vực không có xe cộ. Dưới đây là 3 mức độ nghiêm trọng của nứt khối:

(a) Hư hỏng nhẹ: Các vết nứt không hàn gắn nhưng không bị vỡ vụn, tách ra (cạnh của vết nứt theo chiều thẳng đứng) hoặc các vết nứt chỉ bị nứt rất nhỏ (vết nứt có độ rộng nhỏ trung bình 6 mm hoặc nhỏ hơn). Cũng như vậy, các vết nứt đã hàn gắn bằng vật liệu chống thấm có thể ngăn ngừa sự xâm nhập của hơi ẩm từ bên ngoài được, là các vết nứt khối có mức hư hỏng nhẹ.

(b) Hư hỏng vừa: Các vết nứt khối bao gồm các vết nứt đã hàn gắn hoặc không hàn gắn có độ rạn vỡ trung bình; các vết nứt không hàn gắn mà không nứt tách riêng ra hoặc chỉ bị tách nhỏ nhưng có độ rộng trung bình lớn hơn 6 mm, hoặc các vết nứt đã hàn gắn hoặc chỉ bị nứt rất nhỏ nhưng có vật liệu gắn kết đáp ứng yêu cầu.

(c) Hư hỏng nặng: Các khối bị nứt tách ra nghiêm trọng.



(3) Nứt ngang. Vết nứt ngang gần như vuông góc với tim đường. Những vết nứt này có thể do co ngót hoặc do ứng suất nhiệt của bề mặt AC hoặc do sự hóa rắn của nhựa, hoặc có thể là các vết nứt phản hồi gây ra do vết nứt gẫy của lớp móng dưới, tức là các vết nứt do co ngót trong lớp móng xử lý bằng xi măng. Dưới đây là 3 mức độ hư hỏng của vết nứt ngang:

(a) Hư hỏng nhẹ: Các vết nứt đã hàn gắn hoặc không hàn gắn nhưng không bị nứt tách hoặc nếu có thì rất nhỏ. Nếu là các vệt nứt đã hàn gắn chúng sẽ có độ rộng bé hơn 6mm. Các vết nứt đã hàn gắn có thể có độ rộng tùy ý nhưng vật liệu gắn kết phải đáp ứng điều kiện ngăn chặn được sự thâm nhập của nước vào mặt đường. Không gây ra xóc mạnh khi xe chạy qua vết nứt.

(b) Hư hỏng vừa. Một trong các loại dưới đây:

● các vết nứt đã hàn gắn được hoặc không hàn gắn có chiều rộng bất kỳ, bị nứt tách ra với độ rộng vừa phải.

● các vết nứt đã hàn gắn không bị nứt tách ra hoặc chỉ tách ra rất nhỏ, nhưng chất hàn gắn ở trong tình trạng để nước thấm qua một cách tự do.

● vết nứt không hàn gắn không bị nứt tách hoặc tách ra rất nhỏ, nhưng độ rộng trung bình của khe nứt lớn hơn 6 mm;

● vết nứt ngẫu nhiên không lớn xuất hiện gần vết nứt chính hoặc tại các góc của các vết nứt thành mạng; hoặc

● vết nứt gây ra xóc mạnh khi xe chạy qua.

(c) Hư hỏng nặng: Là một trong những loại sau:

● các vết nứt bị tách ra nghiêm trọng.

● vết nứt ngẫu nhiên lớn hoặc trung bình xuất hiện gần khe nứt hoặc tại các góc điểm giao giữa các vết nứt; hoặc

● vết nứt gây ra xóc mạnh tới xe cộ.



(4) Vết nứt dọc. Các vết nứt dọc gần như song song với tim đường. Nguyên nhân gây ra có thể là do:

● các chỗ nối giữa các làn xe thi công kém chất lượng;

● hiện tượng co ngót của bề mặt AC do nhiệt độ thấp hoặc sự hóa rắn nhựa; hoặc

● vết nứt phản hồi gây ra do tác động nứt gẫy của lớp dưới lớp mặt.

Các mức độ nghiêm trọng của các vết nứt dọc cũng tương tự như mức độ nghiêm trọng của các vết nứt ngang đã đề cập tại mục (3) ở trên.

(5) Vết hằn bánh xe. Vết hằn bánh xe là hiện tượng bề mặt lún xuống theo vệt bánh xe mà có thể khiến cho mặt đường bị trồi lên. Vết hằn bánh xe phát sinh do biến dạng không phục hồi ở bất kỳ lớp mặt đường nào hoặc phát sinh từ lớp nền, thường xuất hiện do hiện tượng cố kết hoặc chuyển vị ngang của lớp đó do tải trọng xe. Hiện tượng vết hằn bánh xe có thể gây ra do chuyển vị dẻo của lớp AC trong thời tiết nóng, hoặc do đầm nén không đủ trong khi thi công. Vết hằn bánh xe nghiêm trọng có thể gây ra sự phá hỏng kết cấu mặt đường và hiện tượng phụt nước. Dưới đây là 3 mức độ nghiêm trọng của vết hằn.

(a) Mức độ nhẹ. Vết hằn sâu trung bình từ 6 mm đến 13 mm.

(b) Mức độ vừa. Vết hằn sâu trung bình từ lớn hơn 13 mm đến 25 mm.

(c) Mức độ cao. Vết hằn sâu trung bình lớn hơn 25 mm.



(6) Hiện tượng bong bật. Bong bật là hiện tượng mặt đường bị bào mòn do sự tách rời giữa cốt liệu và chất dính kết. Nói chung hiện tượng này xảy ra do chất kết dính asphalt không đủ khi trộn hoặc các hạt cốt liệu bị bóc nhựa. Dưới đây là các mức độ hư hỏng:

(a) Mịn. Cốt liệu mịn và chất kết dính đã mòn dần và độ nhám của mặt đường là tương đối ráp và lỗ chỗ.

(b) Thô. Cốt liệu thô và/hoặc chất kết dính đã mòn dần, bề mặt lồi lõm và rỗ nhiều.

(7) Bong bật vì vệt dầu. Bong bật lỗ chỗ theo vệt dầu là sự phân hủy liên tục của bề mặt giữa các vệt bánh xe. Nguyên nhân gây ra hiện tượng này là do sự rò rỉ của dầu và xăng từ các phương tiện giao thông. Các sản phẩm dầu lửa này làm mềm và làm yếu bitum gây ra hiện tượng bóc tách giữa cốt liệu và chất kết dính. Bong bật do dầu và xăng đã lọc chất kết dính asphalt, là tình trạng chủ yếu diễn ra ở các nút giao thông nơi các phương tiện giao thông phải dừng trước khi tiếp tục chuyển bánh.

(8) Chảy nhựa. Chảy nhựa, cũng được xem như việc tràn ra của nhựa, là sự rỉ ra của nhựa trên bề mặt mặt đường tạo ra bề mặt phản chiếu, giống như gương và bóng. Cũng như thế, hiện tượng chảy nhựa có thể kéo dài thành dòng nhựa chảy trên mặt đường. Nói chung, chảy nhựa gây ra do lượng chất liên kết asphalt quá dư thừa trong hỗn hợp và/hoặc do độ rỗng thấp. Điều đó xảy ra khi mà asphalt lấp đầy các lỗ rỗng của hỗn hợp khi thời tiết nóng và sau đó tràn ra ngoài mặt đường. Độ ẩm lớn trong mặt đường có thể là nguyên nhân gây ra bóc nhựa dẫn đến hiện tượng chảy nhựa. Vì hiện tượng chảy nhựa có thể không phục hồi lại khi thời tiết lạnh, nhựa sẽ tích lũy trên bề mặt và làm giảm khả năng chống trượt.



tải về 0.89 Mb.

Chia sẻ với bạn bè của bạn:
1   ...   4   5   6   7   8   9   10   11   12




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương