Table of contents 1 Why is particle size important?


CENTRAL VALUES: MEAN, MEDIAN, MODE



tải về 7.54 Mb.
Chế độ xem pdf
trang5/33
Chuyển đổi dữ liệu17.09.2022
Kích7.54 Mb.
#53206
1   2   3   4   5   6   7   8   9   ...   33
Particle Guidebook 09-2019

CENTRAL VALUES: MEAN, MEDIAN, MODE
For symmetric distributions such as the one shown in Figure 2 all central values are 
equivalent: mean = median = mode. But what do these values represent?
MEAN
Mean is a calculated value similar to the concept of average. The various mean 
calculations are defined in several standard documents (ref.1,2). There are multiple
definitions for mean because the mean value is associated with the basis of the
distribution calculation (number, surface, volume). See (ref. 3) for an explanation of 
number, surface, and volume distributions. Laser diffraction results are reported on a 
volume basis, so the volume mean can be used to define the central point although
the median is more frequently used than the mean when using this technique. The 
equation for defining the volume mean is shown below. The best way to think about
this calculation is to think of a histogram table showing the upper and lower limits 
of n size channels along with the percent within this channel. The Di value for each 
channel is the geometric mean, the square root of upper x lower diameters. For the 
numerator take the geometric Di to the fourth power x the percent in that channel, 
summed over all channels. For the denominator take the geometric Di to the third 
power x the percent in that channel, summed over all channels.
Understanding and interpreting 
particle size distribution calculations
figure 2
|
SYMMETRIC DISTRIBUTION
 
WHERE MEAN=MEDIAN=MODE
3


The volume mean diameter has several names including D4,3. In all HORIBA 
diffraction software this is simply called the “mean” whenever the result is displayed 
as a volume distribution. Conversely, when the result in HORIBA software is 
converted to a surface area distribution the mean value displayed is the surface 
mean, or D 3,2. The equation for the surface mean is shown below
.
The description for this calculation is the same as the D4,3 calculation, except 
that Di values are raised to the exponent values of 3 and 2 instead of 4 and 3. 
The generalized form of the equations seen above for D4,3 and D3,2 is shown below 
(following the conventions from ref. 2, ASTM E 799, )
.
Where:

= the overbar in D designates an averaging process
(p-q)p>q 
= the algebraic power of Dpq
Di 
= the diameter of the ith particle
Σ
= the summation of Dip or Diq, representing all particles in the sample
Some of the more common representative diameters are:
D10 
= arithmetic or number mean
D32 
= volume/surface mean (also called the Sauter mean)
D43 
= the mean diameter over volume (also called the DeBroukere mean)
The example results shown in ASTM E 799 are based on a distribution of liquid 
droplets (particles) ranging from 240 – 6532 µm. For this distribution the following 
results were calculated:
D10 
= 1460 µm
D32 
= 2280 µm
D50 
= 2540 µm
D43 
= 2670 µm
These results are fairly typical in that the D43 is larger than the D50—
the volume-basis median value. 
MEDIAN
Median values are defined as the value where half of the population resides above
this point, and half resides below this point. For particle size distributions the 
median is called the D50 (or x50 when following certain ISO guidelines). The D50 
is the size in microns that splits the distribution with half above and half below this 
diameter. The Dv50 (or Dv0.5) is the median for a volume distribution, Dn50 is 
used for number distributions, and Ds50 is used for surface distributions. Since the 
primary result from laser diffraction is a volume distribution, the default D50 cited 
is the volume median and D50 typically refers to the Dv50 without including the 
v. This value is one of the easier statistics to understand and also one of the most 
meaningful for particle size distributions.
4


MODE
The mode is the peak of the frequency distribution, or it may be easier to visualize 
it as the highest peak seen in the distribution. The mode represents the particle 
size (or size range) most commonly found in the distribution. Less care is taken to 
denote whether the value is based on volume, surface or number, so either run the 
risk of assuming volume basis or check to assure the distribution basis. The mode is 
not as commonly used, but can be descriptive; in particular if there is more than one 
peak to the distribution, then the modes are helpful to describe the mid-point of the 
different peaks. 
For non-symmetric distributions the mean, median and mode will be three different 
values shown in Figure 3.

tải về 7.54 Mb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5   6   7   8   9   ...   33




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương