Bài 16 Ức chế vi sinh vật bằng các tác nhân vật lý và hóa học


KHU TRÚ TRAO ĐỔI CHẤT (Metabolic Channeling)



tải về 278.6 Kb.
trang7/7
Chuyển đổi dữ liệu23.08.2016
Kích278.6 Kb.
#27825
1   2   3   4   5   6   7

16.4. KHU TRÚ TRAO ĐỔI CHẤT (Metabolic Channeling)


      Một trong các cơ chế khu trú trao đổi chất phổ biến nhất là sự chia khoang (compartmentation) nghĩa là sự phân bố biệt hoá các enzyme và các chất trao đổi trong các cấu trúc tế bào tách biệt hoặc các bào quan có màng bao bọc. Chẳng hạn, sự oxy hoá acid béo gặp bên trong ti thể nhưng tổng hợp acid béo lại diễn ra trong tế bào chất. Chu chất ở vi khuẩn cũng có thể được xem là một ví dụ của sự chia khoang. Sự chia khoang tạo điều kiện cho việc hoạt động và điều chỉnh đồng thời nhưng tách biệt của các con đường có thể được phối hợp nhờ sự điều chỉnh việc vận chuyển các chất trao đổi và các coenzyme giữa các khoang của tế bào. Giả dụ, có hai con đường tồn tại trong các khoang tế bào khác nhau nhưng đều cần NAD+ cho hoạt động. Sự phân bố NAD+ giữa hai khoang sẽ quyết định hoạt tính tương đối của các con đường cạnh tranh này và con đường nào chiếm dư thừa NAD+ sẽ có lợi thế hơn.

      Sự chia khoang cũng gặp bên trong các khoang như nền tế bào chất. Nền (matrix) là vật thể đông đặc, có cấu trúc gồm nhiều khoang nhỏ. Ở sinh vật nhân thật nền cũng được chia nhỏ bởi lưới nội chất (endoplasmic reticulum) và bộ khung tế bào (cytoskeleton). Trong một môi trường như vậy các chất trao đổi và các coenzyme không khuếch tán nhanh và các gradien chất trao đổi sẽ được thiết lập gần các enzyme hoặc các hệ thống enzyme cục bộ. Điều này diễn ra vì các enzyme ở một vị trí đặc biệt chuyển hoá các chất thành sản phẩm dẫn đến giảm nồng độ của một hoặc nhiều chất trao đổi này và tăng nồng độ của một hoặc nhiều chất trao đổi khác. Chẳng hạn, nồng độ sản phẩm sẽ cao ở gần enzyme và thấp dần theo khoảng cách tăng lên tính từ enzyme.

      Sự khu trú có thể tạo ra những thay đổi rõ rệt trong nồng độ chất trao đổi và vì vậy ảnh hưởng trực tiếp đến hoạt tính enzyme. Nồng độ cơ chất, nói chung, thường ở vào khoảng 10-3 - 10-6M/l, thậm chí thấp hơn, nghĩa là có thể ở trong cùng phạm vi như nồng độ enzyme và bằng hoặc nhỏ hơn hằng số Michaelis (Km) của nhiều enzyme. Dưới các điều kiện như vậy nồng độ cơ chất của một enzyme có thể điều hoà hoạt tính của chất xúc tác vì nồng độ cơ chất là ở trong phần tăng lên của đường cong hyperbole của sự bão hoà cơ chất (Hình 16.20).

      

      Hình 16.20: Điều hòa hoạt tính enzyme bởi nồng độ cơ chất

Trong hình là đường cong bão hòa enzyme-cơ chất với hằng số Michaelis (Km) và tốc độ tương đương với ½ tốc độ cực đại (Vmax). Tốc độ ban đầu của phản ứng (v) được dựng đồ thị đối với nồng độ cơ chất. Tốc độ cực đại là tốc độ lớn nhất đạt được với một số lượng enzyme cố định dưới những điều kiện xác định. Khi nồng độ cơ chất bằng hoặc nhỏ hơn Km hoạt tính enzyme sẽ thay đổi hầu như tuyến tính với nồng độ cơ chất. Giả dụ, nồng độ cơ chất tăng từ mức độ A tới mức độ B. Vì những nồng độ này đều ở trong phạm vi của Km nên hoạt tính enzyme tăng lên rõ rệt. Sự giảm nồng độ từ B đến A sẽ hạ thấp tốc độ tạo thành sản phẩm. (Theo Prescott, Harley và Klein, 2005)

      Khi nồng độ cơ chất tăng, cơ chất sẽ được chuyển thành sản phẩm nhanh hơn; nồng độ cơ chất giảm đương nhiên dẫn đến hoạt tính enzyme thấp hơn. Nếu 2 enzyme ở hai con đường khác nhau cùng sử dụng một chất trao đổi chúng có thể trực tiếp cạnh tranh chất này, con đường thắng trong cuộc cạnh tranh này, nghĩa là con đường với enzyme có giá trị Km thấp nhất đối với chất trao đổi, sẽ hoạt động gần như hoàn toàn thống trị. Do đó sự khu trú bên trong một khoang tế bào có thể điều chỉnh và phối hợp trao đổi chất thông qua những biến đổi trong nồng độ chất trao đổi và nồng độ coenzyme.


16.5. ĐIỀU HÒA HOẠT TÍNH ENZYME


      Hoạt động của nhiều con đường trao đổi chất có thể được điều hoà nhờ việc điều chỉnh hoạt tính của các enzyme điều chỉnh. Mục này mô tả các enzyme nói trên và đề cập vai trò của chúng trong việc điều chỉnh hoạt tính của con đường.

16.5.1. Điều chỉnh dị lập thể


      Các enzyme điều chỉnh thường là các enzyme dị lập thể (allosteric enzymes). Hoạt tính của một enzyme dị lập thể bị thay đổi bởi một phân tử nhỏ gọi là effector (effector, chất tác động) hoặc modulator (modulator, chất điều biến). Effector liên kết thuận nghịch nhờ lực không - cộng hoá trị vào một vị trí điều chỉnh (regulatory site) tách biệt khỏi vị trí xúc tác (catalytic site) và gây ra sự thay đổi trong hình dạng hoặc hình thể của enzyme (Hình 16.21). Hoạt tính của vị trí xúc tác do đó bị thay đổi. Một effector dương làm tăng hoạt tính enzyme, một effector âm, trái lại, làm giảm hoạt tính hoặc kìm hãm enzyme. Những thay đổi như vậy trong hoạt tính thường bắt nguồn từ những biến đổi trong ái lực biểu kiến của enzyme đối với cơ chất, tuy nhiên những thay đổi trong tốc độ cực đại cũng có thể diễn ra. 
 

      Hình 16.21: Điều chỉnh dị lập thể



Cấu trúc và chức năng của 1 enzyme dị lập thể. Trong hình bên effector hoặc modulator (chất điều biến) trước hết gắn vào 1 vị trí điều hòa tách biệt và làm thay đổi hình thể enzyme dẫn đến sự thay đổi hình dạng của vị trí hoạt động. Vị trí hoạt động giờ có thể liên kết cơ chất hiệu quả hơn. Ở đây effector là dương tính vì nó kích thích sự liên kết cơ chất và hoạt tính xúc tác.  (Theo Prescott, Harley và Klein, 2005)

      Các enzyme điều chỉnh thường là các enzyme dị lập thể (allosteric enzymes). Hoạt tính của một enzyme dị lập thể bị thay đổi bởi một phân tử nhỏ gọi là effector (effector, chất tác động) hoặc modulator (modulator, chất điều biến). Effector liên kết thuận nghịch nhờ lực không - cộng hoá trị vào một vị trí điều chỉnh (regulatory site) tách biệt khỏi vị trí xúc tác (catalytic site) và gây ra sự thay đổi trong hình dạng hoặc hình thể của enzyme (Hình 16.21). Hoạt tính của vị trí xúc tác do đó bị thay đổi. Một effector dương làm tăng hoạt tính enzyme, một effector âm, trái lại, làm giảm hoạt tính hoặc kìm hãm enzyme. Những thay đổi như vậy trong hoạt tính thường bắt nguồn từ những biến đổi trong ái lực biểu kiến của enzyme đối với cơ chất, tuy nhiên những thay đổi trong tốc độ cực đại cũng có thể diễn ra. 


 

      Hình 16.22: Sự điều chỉnh ACTase



Phản ứng Aspartate- carbamoyltransferase và vai trò của enzyme này trong việc điều chỉnh sinh tổng hợp pyrimidine. Sản phẩm cuối cùng CTP kìm hãm hoạt tính của ACTase (-) còn ATP lại hoạt hóa enzyme (+). Cacbamoyl Phosphate synthetase cũng bị kìm hãm bởi các sản phẩm cuối cùng của con đường như UMP. (Theo Prescott, Harley và Klein, 2005)

      Các đặc tính động học của enzyme không - điều chỉnh chứng minh rằng hằng số Michaelis (Km) là nồng độ cơ chất cần cho một enzyme hoạt động ở tốc độ bằng nửa tốc độ cực đại. Hằng số này chỉ ứng dụng cho các đường cong bão hoà cơ chất hyperbole mà không cho các đường cong xích-ma thường gặp với các enzyme dị lập thể (Hình 16.23). Nồng độ cơ chất cần cho một nửa tốc độ cực đại với các enzyme dị lập thể có đường cong cơ chất xích-ma được gọi là giá trị [S]0,5 hoặc K0,5.

      Một trong các enzyme điều chỉnh dị lập thể được nghiên cứu kỹ nhất đó là Aspartate-carbamoyltransferase (ACTase) ở E. coli. Enzyme xúc tác sự ngưng tụ của cacbamoylphosphate với aspartate tạo thành cacbamoylaspartate (Hình 16.22).

      ACTase xúc tác phản ứng quyết định tốc độ của con đường sinh tổng hợp pyrimidine ở E. coli. Đường cong cơ chất bão hoà là xích-ma khi nồng độ của một trong hai cơ chất thay đổi (Hình 16.23)

       

      Hình 16.23: Động học của Aspartate carbamoyltransferase ở E. coli



CTP là 1 effector âm làm tăng giá trị K0,5, còn ATP là 1 effector dương, hạ thấp K0,5. Vmax vẫn là hằng số. (Theo Prescott, Harley và Klein, 2005)

      Enzyme có trên một vị trí hoạt động và sự liên kết của một phân tử cơ chất vào một vị trí hoạt động sẽ kích thích sự liên kết của cơ chất vào các vị trí khác. Hơn nữa, cytidine triphosphate (CTP), một sản phẩm cuối cùng của sinh tổng hợp pyrimidine, kìm hãm enzyme, trái lại ATP (purine) lại hoạt hoá enzyme. Cả hai effector thay đổi giá trị K0,5 của enzyme nhưng không thay đổi tốc độ cực đại của enzyme. GTP kìm hãm bằng cách nâng cao K0,5 hoặc chuyển dịch đường cong bão hoà cơ chất lên các giá trị cao hơn. Điều này cho phép enzyme hoạt động chậm hơn ở một nồng độ cơ chất đặc biệt khi CTP có mặt. ATP hoạt hoá bằng cách chuyển đường cong tới các giá trị nồng độ cơ chất thấp hơn khiến cho enzyme hoạt động cực đại qua một phạm vi nồng độ cơ chất rộng lớn. Do đó, khi con đường hoạt động tới mức nồng độ CTP tăng quá cao hoạt tính ACTase sẽ giảm và tốc độ tạo thành sản phẩm cuối cùng bị chậm lại. Trái lại, khi nồng độ sản phẩm cuối cùng ATP tăng lên so với CTP, ATP sẽ kích thích tổng hợp CTP thông qua tác dụng lên ACTase.

      Aspartate carbamoyltransferase ở E. coli cung cấp một ví dụ rõ rệt về các vị trí điều chỉnh và vị trí xúc tác riêng rẽ trong các enzyme dị lập thể. Enzyme là một protein lớn gồm 2 dưới đơn vị xúc tác và 3 dưới đơn vị điều chỉnh (Hình 16.24a). Các dưới đơn vị xúc tác chỉ chứa các vị trí xúc tác và không chịu ảnh hưởng bởi CTP và ATP. Các dưới đơn vị điều chỉnh không xúc tác phản ứng nhưng có các vị trí điều chỉnh liên kết CTP và ATP. Khi liên kết vào enzyme hoàn toàn các effector này gây ra những thay đổi về hình thể trong các dưới-đơn vị điều chỉnh, sau đó trong các dưới đơn vị xúc tác và các vị trí xúc tác. Enzyme có thể thay đổi thuận nghịch giữa một dạng T ít hoạt động và một dạng R hoạt động hơn (Hình 16.24 b, c). Do đó vị trí điều chỉnh ảnh hưởng đến vị trí xúc tác ở khoảng cách khoảng 6,0 nm.



      Hình 16.24: Cấu trúc và điều chỉnh của Aspartate carbamoyltransferase ở E. coli. (Theo Prescott, Harley và Klein, 2005)


16.5.2. Cải biến cộng hoá trị các enzyme


      Các enzyme cũng có thể được kích thích hoặc bị kìm hãm thông qua sự cải biến cộng hoá trị thuận nghịch. Thông thường điều này diễn ra do việc thêm và loại bỏ một nhóm đặc biệt, nghĩa là một dạng của enzyme được hoạt động hơn một dạng khác. Chẳng hạn, glycogen phosphorylase của mốc bánh mì Neurospora crassa được gọi là phosphorylase a khi ở dạng phosphoryl hoá và phosphorylase b khi ở dạng bị loại bỏ Phosphate (Hình 16.25). Phosphorylase b là bất hoạt vì chất hoạt hoá AMP mà nó cần thường không có mặt ở mức độ đủ cao. Dạng phosphoryl hoá của phosphorylase a hoạt động ngay khi không có mặt AMP. Glycogen phosphorylase được kích thích thông qua việc phosphoryl hóa phosphorylase b thành phosphorylase a. Việc gắn nhánh Phosphate làm thay đổi hình thể của enzyme chuyển nó thành dạng hoạt động. Phản ứng phosphoryl hoá và loại bỏ Phosphate được xúc tác bởi các enzyme riêng rẽ và các enzyme này cũng được điều chỉnh.

      Hình 16.25: Sự cải biến cộng hóa trị thuận nghịch của glycogen phosphorylase. Phosphorylase a là dạng hoạt động được tổng hợp bởi phosphoryl hóa và bị bất hoạt khi Phosphate bị loại bỏ do thủy phân để tạo thành phosphorylase b bất hoạt. (Theo Prescott, Harley và Klein, 2005)

      Các enzyme cũng có thể được điều chỉnh nhờ liên kết với các nhóm khác Phosphate. Một trong các enzyme được nghiên cứu chi tiết nhất đó là Glutamine synthetase ở E. coli. Đây là một enzyme lớn, phức tạp tồn tại ở hai dạng. Khi một nhánh acid adenylic liên kết với một trong 12 dưới-đơn vị của enzyme tạo thành một enzyme adenyl hoá, glutamine synthetase hoạt động yếu. Việc loại bỏ các nhóm AMP tạo ra glutamine synthetase đã mất adenyl hoạt động hơn và glutamine được tổng hợp. Hệ thống glutamine synthetase khác hệ thống phosphorylase ở hai điểm: 1) AMP được dùng như tác nhân cải biến; 2) Dạng cải biến của Glutamine synthetase kém hoạt động. Glutamine synthetase cũng được điều chỉnh dị lập thể.

      Việc sử dụng cải biến cộng hoá trị để điều chỉnh hoạt tính enzyme có một số ưu điểm. Các enzyme có thể chuyển hoá qua lại thường cũng là các enzyme dị lập thể. Vì mỗi dạng có thể đáp ứng khác nhau với các effector dị lập thể nên các hệ thống enzyme cải biến cộng hoá trị có khả năng đáp ứng với nhiều chất kích thích hơn trong các con đường thay đổi và phức tạp. Cũng có thể được điều chỉnh là các enzyme xúc tác những cải biến cộng hoá trị, bổ sung vào hệ thống một mức độ điều chỉnh thứ hai.


16.5.3. Kìm hãm phản hồi hoặc kìm hãm bởi sản phẩm cuối cùng (Feedback inhibition)


      Như đã nói ở phần trên, tốc độ của nhiều con đường trao đổi chất được điều chỉnh thông qua sự điều khiển hoạt tính của các enzyme điều chỉnh. Mỗi con đường có ít nhất một enzyme dẫn-tốc độ (pacemaker) xúc tác phản ứng chậm nhất hoặc hạn chế tốc độ trong con đường. Vì các phản ứng khác diễn ra nhanh hơn phản ứng dẫn-tốc độ do đó những thay đổi trong hoạt tính của enzyme này trực tiếp ảnh hưởng đến tốc độ của con đường. Thông thường, bước thứ nhất trong một con đường là một phản ứng dẫn tốc độ xúc tác bởi một enzyme điều chỉnh. Sản phẩm cuối cùng của con đường thường kìm hãm enzyme điều chỉnh này. Quá trình nói trên được gọi là sự kìm hãm bởi sản phẩm cuối cùng. Kiểu kìm hãm này bảo đảm cho sự tạo thành cân bằng của sản phẩm cuối cùng của một con đường. Nếu tích luỹ với nồng độ quá cao sản phẩm cuối cùng sẽ kìm hãm enzyme điều chỉnh và làm giảm tốc độ tổng hợp của chính sản phẩm này. Khi nồng độ của sản phẩm cuối cùng giảm, hoạt tính của con đường lại tăng và nhiều sản phẩm hơn được tạo thành. Sự kìm hãm bởi sản phẩm cuối cùng, nhờ vậy, đã tự động phối hợp việc cung cấp theo nhu cầu của sản phẩm này. Aspartate carbamoyltransferase là một ví dụ điển hình của sự kìm hãm bởi sản phẩm một con đường sinh tổng hợp thường phân nhánh tạo thành trên một sản phẩm cuối cùng. Trong tình hình như vậy việc tổng hợp các sản phẩm cuối cùng của con đường phải được phối hợp một cách chính xác. Không thể để một sản phẩm cuối cùng này có mặt dư thừa trong khi một sản phẩm cuối cùng khác lại thiếu. Sự phân nhánh các con đường sinh tổng hợp thường tạo nên sự cân bằng giữa các sản phẩm cuối cùng qua việc sử dụng các enzyme điều chỉnh ở các điểm phân nhánh (Hình 16.26).

      Khi có mặt ở nồng độ dư thừa một sản phẩm cuối cùng thường kìm hãm enzyme ở điểm phân nhánh trên chuỗi dẫn đến tạo thành sản phẩm này, nhờ vậy mà điều chỉnh việc tổng hợp của chính sản phẩm đó nhưng không ảnh hưởng đến tổng hợp các sản phẩm khác. Hình 16.26 cũng cho thấy cả 2 sản phẩm cũng kìm hãm enzyme mở đầu trong con đường. Sự dư thừa của một sản phẩm làm chậm dòng C đi vào cả con đường trong khi kìm hãm enzyme thích hợp ở điểm phân nhánh. Vì sự phân nhánh không hoạt động cần ít C do đó sự kìm hãm bởi sản phẩm cuối cùng của enzyme dẫn tốc độ ban đầu giúp cho sự điều hoà giữa cung và cầu ở các con đường phân nhánh. Việc điều chỉnh ở các con đường phân nhánh nhiều thường được thực hiện phức tạp hơn do sự có mặt của các izoenzyme tức là những enzyme khác nhau nhưng xúc tác cùng một phản ứng. Bước đầu dẫn tốc độ ban đầu có thể do một số izoenzyme xúc tác, mỗi izoenzyme chịu sự điều hoà riêng rẽ và độc lập. Trong tình hình như vậy, sự dư thừa của một sản phẩm cuối cùng sẽ làm giảm hoạt tính của con đường nhưng không hoàn toàn kìm hãm chức năng của con đường vì một số izoenzyme vẫn còn hoạt động.



      Hình 16.26: Kìm hãm phản hồi



Trên hình là sự kìm hãm phản hồi trong 1 con đường phân nhánh với 2 sản phẩm cuối cùng. Các enzyme ở điểm phân nhánh xúc tác sự chuyển hóa chất trung gian E thành F và G được điều chỉnh bởi kìm hãm phản hồi. Các sản phẩm P và Q cũng kìm hãm phản ứng mở đầu trong con đường. Tín hiệu chỉ ra rằng P hoặc Q kìm hãm enzyme xúc tác bước tiếp theo tín hiệu. (Theo Prescott, Harley và Klein, 2005) 





tải về 278.6 Kb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5   6   7




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương