500 BÀi toán chọn lọc lớP 5 Bài 1 : Số có 1995 chữ số 7 khi chia cho 15 thì phần thập phân của thương là bao nhiêu?



tải về 0.5 Mb.
trang5/7
Chuyển đổi dữ liệu17.08.2016
Kích0.5 Mb.
1   2   3   4   5   6   7

Bài giải :

Số dư trong phép chia là số dư lớn nhất nên kém số chia 1 đơn vị.

Ta có sơ đồ sau:

Theo sơ đồ, nếu gọi số chia là 1 phần, thêm 1 đơn vị vào số dư và số bị chia thì tổng số phần của số chia, số bị chia và số dư (mới) gồm : 15 + 1 + 1 + 1 = 18 (phần) như vậy. Khi đó tổng của số chia, số bị chia và số dư (mới) là : 769 - 15 + 1 + 1 = 756.

Số chia là : 756 : 18 = 42

Số dư là : 42 - 1 = 41

Số bị chia là : 42 x 15 + 41 = 671
Bài 108 : Số táo của An, Bình và Chi là như nhau. An cho đi 17 quả, Bình cho đi 19 quả thì lúc này số táo của Chi gấp 5 lần tổng số táo còn lại của An và Bình. Hỏi lúc đầu mỗi bạn có bao nhiêu quả táo ?

Bài giải :

Nếu coi số táo của Chi gồm 5 phần thì tổng số táo của An và Bình là 10 phần. Số táo mà An và Bình đã cho đi là : 17 + 19 = 36 (quả)

Vì số táo của Chi gấp 5 lần tổng số táo còn lại của An và Bình nên số táo còn lại của hai bạn gồm 1 phần. Như vậy An và Bình đã cho đi số phần là : 10 - 1 = 9 (phần)

Vậy số táo của Chi là : (36 : 9) x 5 = 20 (quả)

Vì ba bạn có số táo bằng nhau nên mỗi bạn lúc đầu có 20 quả.
Bài 109 : Con số nào trong các số 2, 3, 4, 5 cần thay vào dấu chấm hỏi (?) để hợp lôgic ?


Bài giải :

Gọi số thay vào hình tròn là a, số thay vào tam giác là b và số thay vào hình vuông là c, ta có : a + 3 x b = 22. Vì 3 x b chia hết cho 3 ; 22 chia cho 3 dư 1 nên a chia cho 3 dư 1 (*). Ta lại có 2 x a + 2 x c = 10, c nhỏ nhất là 2 nên a lớn nhất là (10 - 2 x 2) : 2 = 3 (**). Từ (*) và (**) ta có a = 1. Do đó 1 + 3 x b = 22 ; b = (22 - 1) : 3 = 7 ; c = (10 - 2 x 1) : 2 = 4.

Vậy số cần thay vào dấu chấm hỏi để hợp lôgic là số 4.
Bài 110 : Hãy dùng tất cả các chữ số, mỗi chữ số một lần để viết năm số tự nhiên, trong đó có một số lần lượt bằng 1/2 ; 1/3 ; 1/4 và 1/5 các số còn lại.

Bài giải :

Gọi 5 số tự nhiên xếp theo thứ tự từ bé đến lớn là A ; B ; C ; D ; E.

Nếu A có 1 chữ số thì E không vượt quá 9 x 5 = 45. Như thế có 4 số có không quá 2 chữ số nên mới chỉ dùng không quá 9 chữ số (2 x 4 + 1 = 9). Vậy A có nhiều hơn 1 chữ số. Nếu E có 3 chữ số thì A có ít nhất 2 chữ số (vì 100 : 5 = 20). Như vậy có 4 số có 2 chữ số và 1 số có 3 chữ số nên phải dùng nhiều hơn 10 chữ số (2 x 4 + 3 = 11). Vậy cả 5 số phải là các số có 2 chữ số và E lớn hơn 45 chia hết cho 5. Vậy E có thể là : 95 ; 90 ; 85 ; 80 ; 75 ; 70 ; 65 ; 60 ; 55 ; 50. Ta có bảng lựa chọn sau :


Số thứ nhất là 18, số thứ hai là 36, số thứ ba là 54, số thứ tư là 72 và số thứ 5 là 90.
Bài 111 : Bạn hãy xóa những chữ số nào đó để được phép tính đúng : 151 x 375 = 450.

Bài giải :

Hai thừa số ở vế trái đẳng thức chỉ có các chữ số lẻ nên dù xóa các chữ số như thế nào thì kết quả phép nhân cũng là một số lẻ. Vậy vế phải chỉ có thể là 45 hoặc 5.



Trường hợp 1 : Kết quả phép nhân là 45 ta có một cách xóa :


Trường hợp 2 : Kết quả phép nhân là 5 ta có hai cách xóa :



Bài 112 : Có hai tấm bìa hình vuông mà số đo các cạnh là số tự nhiên chia hết cho 3. Đặt tấm bìa hình vuông nhỏ lên tấm bìa hình vuông lớn thì diện tích phần tấm bìa không bị chồng lên là 63 cm2. Tìm cạnh của mỗi tấm bìa đó.

Bài giải :


Ta đặt tấm bìa hình vuông nhỏ lên tấm bìa hình vuông lớn sao cho cạnh hình vuông nhỏ trùng khít với cạnh hình vuông lớn. Gọi hai hình vuông là ABCD và AEGH. Diện tích phần tấm bìa không bị chồng lên bao gồm hai hình chữ nhật BCKE và DKGH. Hai hình chữ nhật này có BE = DH (chính là hiệu số đo các cạnh của hai hình vuông). Chuyển hình chữ nhật BCKE xuống bên cạnh hình chữ nhật DKGH ta được hình chữ nhật GKMN. Khi đó ta có diện tích hình chữ nhật HDMN là 63 cm2. Ta thấy hình chữ nhật HDMN có chiều dài và chiều rộng chính là tổng và hiệu số đo hai cạnh hình vuông. Vì hai hình vuông đều có số đo các cạnh là số tự nhiên chia hết cho 3, nên tổng và hiệu số đo hai cạnh hình vuông cũng phải là số chia hết cho 3. Do đó chiều dài và chiều rộng của hình chữ nhật HDMN đều là số chia hết cho 3.

Vì 63 = 1 x 63 = 3 x 21 = 7 x 9 nên chiều dài và chiều rộng của hình chữ nhật HDMN phải là 21 cm và 3 cm.

Vậy độ dài cạnh của tấm bìa hình vuông nhỏ là : (21 - 3) : 2 = 9 (cm)

Độ dài cạnh của tấm bìa hình vuông lớn là : 9 + 3 = 12 (cm)


Bài 113 : So sánh M và N biết :
Bài giải :


Bài 114 : Một bảng ô vuông gồm 3 dòng và 8 cột như hình vẽ. Trên mỗi dòng ta điền các số tự nhiên liên tiếp từ 1 đến 8 vào mỗi ô theo thứ tự tùy ý (mỗi ô một số và mỗi số chỉ điền một lần) sao cho tổng các số ở 8 cột đều bằng nhau. Bạn Nhi cho rằng có thể làm được còn bạn Tín khẳng định không điền được. Hỏi ai đúng, ai sai ?


Bài giải :

Giả sử có thể điền được theo yêu cầu bài toán (Bạn Nhi nói đúng).

Tổng các số tự nhiên liên tiếp từ 1 đến 8 là : 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36.

Mỗi dòng điền các số tự nhiên liên tiếp từ 1 đến 8 nên tổng các số trên 3 dòng trong bảng ô vuông đó là : 36 x 3 = 108. Vì tổng các số ở 8 cột đều bằng nhau nên tổng tất cả các số trong bảng ô vuông phải là một số chia hết cho 8. Nhưng 108 không chia hết cho 8 nên điều giả sử ở trên là sai tức là bạn Nhi nói sai và bạn Tín nói đúng.


Bài 115 : Nếu đếm các chữ số ghi tất cả các ngày trong năm 2004 trên tờ lịch treo tường thì sẽ được kết quả là bao nhiêu ?

Bài giải :

Năm 2004 là năm nhuận có 366 ngày.

Một năm có 12 tháng, mỗi tháng có 9 ngày từ mùng 1 đến mùng 9 là những ngày được viết bằng các số có 1 chữ số. Như vậy số ngày được viết bằng số có 1 chữ số là : 9 x 12 = 108 (ngày).

Số ngày còn lại trong năm được viết bằng số có 2 chữ số là :

366 - 108 = 258 (ngày).

Vậy đếm các chữ số ghi tất cả các ngày của năm 2004 trên tờ lịch thì ta được :

1 x 108 + 2 x 258 = 624 (chữ số).
Bài 116 : Cho :

Hãy so sánh S và 1/2.

Bài giải :



Bài 117 : Cho một số tự nhiên, nếu viết thêm một chữ số vào bên phải số đó ta được số mới hơn số đã cho đúng 2004 đơn vị. Tìm số đã cho và chữ số viết thêm.

Bài giải :

Cách 1 : Khi viết thêm một chữ số nào đó vào bên phải một số tự nhiên đã cho ta được số mới bằng 10 lần số tự nhiên đó cộng thêm chính chữ số viết thêm. Gọi chữ số viết thêm là a, ta có sơ đồ :


9 lần số đã cho là : 2004 - a.

Số đã cho là : (2004 - a) : 9.

Vì số đã cho là số tự nhiên nên 2004 - a phải chia hết cho 9, số 2004 chia 9 dư 6 nên a chia cho 9 phải dư 6, mà a là chữ số nên a = 6. Số tự nhiên đã cho là (2004 - 6) : 9 = 222.

Cách 2 : Gọi số tự nhiên đã cho là A chữ số viết thêm là x thì số mới là .

Ta có - A = 2004

A x 10 + x - A = 2004 (phân tích số)

A x 10 - A + x = 2004

A x (10 - 1) + x = 2004 (một số nhân với một tổng)

A x 9 + x = 2004

Vì A x 9 chia hết cho 9 ; 2004 chia 9 dư 6 nên x chia cho 9 phải dư 6. Vì x là chữ số nên x = 6. Ta có :

A x 9 + 6 = 2004

A x 9 = 2004 - 6

A x 9 = 1998

A = 1998 : 9

A = 222.

Vậy số tự nhiên đã cho là 222 ; chữ số viết thêm là 6.
Bài 118 : Một tờ giấy hình vuông có diện tích là 72 cm2 thì đường chéo của tờ giấy đó dài bao nhiêu ?

Bài giải :

Gọi tờ giấy hình vuông là ABCD. Nối hai đường chéo AC và BD cắt nhau tại O (hình vẽ).




Hình vuông được chia thành 4 tam giác vuông nhỏ có diện tích bằng nhau.

Diện tích tam giác AOB là : 72 : 4 = 18 (cm2).

Vì diện tích tam giác AOB bằng (OA x OB) : 2, do đó (OA x OB) : 2 = 18 (cm2). Suy ra OA x OB = 36 (cm2).

Vì OA = OB mà 36 = 6 x 6 nên OA = 6 (cm).

Vì AC = 2 x OA nên độ dài đường chéo của tờ giấy đó là : 6 x 2 = 12 (cm).
Bài 119 : Trong đợt trồng cây đầu năm, lớp 5A cử một số bạn đi trồng cây và trồng được 180 cây, mỗi học sinh trồng được 8 hoặc 9 cây. Tính số học sinh tham gia trồng cây, biết số học sinh tham gia là một số chia hết cho 3.

Bài giải :

Nếu mỗi bạn trồng 9 cây thì số người tham gia sẽ ít nhất và chính là :

180 : 9 = 20 (người).

Vì 180 : 8 = 22 (dư 4) nên số người tham gia nhiều nhất là 22 người và khi đó có 4 người trồng 9 cây, còn lại mỗi người trồng 8 cây.

Theo đầu bài số người tham gia là một số chia hết cho 3 nên có 21 bạn tham gia.
Bài 120 : Chứng minh rằng không thể thay các chữ bằng các chữ số để có phép tính đúng :

- = 2004

Bài giải :

Cách 1 : Đặt tính :
Xét chữ số hàng đơn vị : Có 2 trường hợp xảy ra :
Trường hợp 1 : I > C.
Khi đó phép trừ ở hàng đơn vị không có nhớ sang hàng chục.
Ở chữ số hàng chục : U - O = 0 hay U = O.

Ở chữ số hàng trăm : V - H = 0 hay V = H.


Do đó (vì ở chữ số hàng nghìn C < I).

Trường hợp 2 : I < C.

Khi đó phép trừ ở hàng đơn vị có nhớ 1 sang hàng chục.

Do đó ở hàng chục : U - O - 1 = 0 hay U - O = 1 nên O < U. Phép trừ không có nhớ sang hàng trăm. ở hàng trăm : V - H = 0 hay V = H.

Vì thế (vì ở chữ số hàng chục nghìn O < U).

Vậy ta không thể thay thế các chữ bằng các chữ số để có phép tính như đã cho.

Cách 2 : Dùng tính chất chia hết của một hiệu :

Ta thấy 2 số có tổng các chữ số bằng nhau nên cả 2 số sẽ có cùng số dư khi chia cho 9, do đó hiệu của hai số chắc chắn sẽ chia hết cho 9.

Mà 2004 không chia hết cho 9, do đó hiệu của hai số không thể bằng 2004.

Nói cách khác ta không thể thay các chữ bằng các chữ số để có phép tính đúng.


Bài 121 : Số chữ số dùng để đánh số trang của một quyển sách là một số chia hết cho số trang của cuốn sách đó. Biết rằng cuốn sách đó trên 100 trang và ít hơn 500 trang. Hỏi cuốn sách đó có bao nhiêu trang ?

Bài giải :

Vì cuốn sách đó trên 100 trang và ít hơn 500 trang nên số trang của cuốn sách đó là một số có 3 chữ số.

Gọi số trang của cuốn sách đó là với a, b, c là các chữ số và a khác 0.

Các số trang của cuốn sách là các số tự nhiên từ 1 đến .

Có 9 trang có 1 chữ số nên cần 9 chữ số để đánh số trang cho các trang này.

Có 90 trang có 2 chữ số nên cần 2 x 90 = 180 (chữ số) để đánh số trang cho các trang này. Số trang có 3 chữ số là - 99 trang. Số chữ số dùng để đánh số trang có 3 chữ số là : 3 x ( - 99)

Số chữ số dùng để đánh số trang của cuốn sách đó là : 9 + 180 + 3 x ( - 99) = 189 + 3 x - 297 = 3 x - 180.

Vì số chữ số dùng để đánh số trang của cuốn sách là số chia hết cho số trang của cuốn sách đó nên chia hết cho hay 108 chia hết cho. Suy ra chính bằng 108. Vậy cuốn sách đó có 108 trang.


Bài 122 : Cha hiện nay 43 tuổi. Nếu tính sang năm thì tuổi cha vừa gấp 4 tuổi con hiện nay. Hỏi lúc con mấy tuổi thì tuổi cha gấp 5 lần tuổi con ? Có bao giờ tuổi cha gấp 4 lần tuổi con không ? Vì sao ?

Bài giải :

Tuổi của cha sang năm là : 43 + 1 = 44 (tuổi)

Tuổi của con hiện nay là : 44 : 4 = 11 (tuổi)

Tuổi cha hơn tuổi con là : 43 - 11 = 32 (tuổi)

Khi tuổi cha gấp 5 lần tuổi con thì cha vẫn hơn con 32 tuổi.

Ta có sơ đồ khi tuổi cha gấp 5 lần tuổi con như sau :




Nhìn vào sơ đồ ta thấy :

Tuổi con khi đó là : 32 : (5 - 1) = 8 (tuổi)

Nếu tuổi cha gấp 4 lần tuổi con, khi đó tuổi con là 1 phần thì tuổi cha là 4 phần như thế. Tuổi cha hơn tuổi con số phần là : 4 - 1 = 3 (phần), khi đó cha cũng vẫn hơn con 32 tuổi ; 32 không chia hết cho 3 nên không bao giờ tuổi cha gấp 4 lần tuổi con (vì ta coi tuổi con hàng năm là một số tự nhiên).
Bài 123 : Có 4 bình (đánh số là 1, 2, 3, 4) đựng số lượng các hòn bi bằng nhau. Lấy ra từ bình thứ nhất một số viên bi, lấy gấp đôi số đó từ bình thứ hai, lấy gấp ba số đó từ bình thứ ba và cuối cùng lấy gấp bốn số đó từ bình thứ tư. Khi đó tổng số bi còn lại trong cả bốn bình là 40 viên và bình thứ tư còn lại đúng 1 viên bi. Hỏi ban đầu số lượng bi trong bốn bình là bao nhiêu ?

Bài giải :


Số bi lấy ra từ bình 1 là : (40 - 1 x 4) : (3 + 2 + 1) = 6 (viên).

Lúc đầu số lượng bi trong bốn bình là : (6 x 4 + 1) x 4 = 100 (viên).


Bài 124 : Từ một tờ giấy kẻ ô vuông, bạn Khang cắt ra một hình sao bốn cánh như hình bên. Hình sao này có diện tích bằng mấy ô vuông ?

Bài giải :

Cách 1 : Diện tích hình sao đúng bằng diện tích hình vuông gồm 16 ô vuông trừ đi diện tích bốn hình tam giác bằng nhau. Mỗi tam giác này có diện tích là 2 ô vuông. Do đó diện tích hình sao là : 16 - 2 x 4 = 8 (ô vuông).

Cách 2 : Cắt ghép để từ hình sao ta có hình mới mà hình này diện tích đúng bằng 8 ô vuông.

Bài 125 : Một đoàn tàu hỏa dài 200 m lướt qua một người đi xe đạp ngược chiều với tàu hết 12 giây. Tính vận tốc của tàu, biết vận tốc của người đi xe đạp là 18 km/giờ.

Bài giải :

Đoàn tàu hỏa dài 200 m lướt qua người đi xe đạp hết 12 giây, có nghĩa là sau 12 giây tổng quãng đường tàu hỏa và xe đạp đi là 200 m. Như vậy tổng vận tốc của tàu hỏa và xe đạp là : 200 : 12 = 50/3(m/giây), 50/3 m/giây = 60 km/giờ.

Vận tốc của xe đạp là 18 km/giờ, thì vận tốc của tàu hỏa là :

60 - 18 = 42 (km/giờ).


Bài 126 : Cho số gồm bốn chữ số có chữ số hàng trăm là 9 và chữ số hàng chục là 7. Tìm số đã cho biết số đó chia hết cho 5 và 27.

Bài giải :

Gọi số phải tìm là (a khác 0 ; a ; b <10)

chia hết cho 5 nên b = 0 hoặc b = 5.

chia hết cho 27 nên chia hết cho 9.

Thay b = 0 ta có chia hết cho 9 nên a = 2. Thử 2970 : 27 = 110 (đúng).

Thay b = 5 ta có chia hết cho 9 nên a = 6. Thử 6975 : 27 = 258 (dư 9) trái với điều kiện bài toán. Vậy số tìm được là 2970.


Bài 127 : Ba lớp 5A, 5B và 5C trồng cây nhân dịp đầu xuân. Trong đó số cây của lớp 5A và lớp 5B trồng được nhiều hơn số cây của 5B và 5C là 3 cây. Số cây của lớp 5B và 5C trồng được nhiều hơn số cây của 5A và 5C là 1 cây. Tính số cây trồng được của mỗi lớp. Biết rằng tổng số cây trồng được của ba lớp là 43 cây.

Bài giải :

Cách 1 : Vì số cây lớp 5A và lớp 5B trồng được nhiều hơn số cây của lớp 5B và 5C là 3 cây nên số cây của lớp 5A hơn số cây của lớp 5C là 3 cây. Số cây của lớp 5B và 5C trồng được nhiều hơn số cây của lớp 5A và 5C là 1 cây nên số cây của lớp 5B trồng được nhiều hơn số cây của lớp 5A là 1 cây.

Ta có sơ đồ :




Ba lần số cây của lớp 5C là : 43 - (3 + 3 + 1) = 36 (cây)

Số cây của lớp 5C là : 36 : 3 = 12 (cây).

Số cây của lớp 5A là : 12 + 3 = 15 (cây).

Số cây của lớp 5B là : 15 + 1 = 16 (cây).



Cách 2 : Hai lần tổng số cây của 3 lớp là : 43 x 2 = 86 (cây).

Ta có sơ đồ :



Số cây của lớp 5A và 5C trồng được là : (86 - 3 - 1 - 1) : 3 = 27 (cây).

Số cây của lớp 5B là : 43 - 27 = 16 (cây).

Số cây của lớp 5B và 5C là : 27 + 1 = 28 (cây).

Số cây của lớp 5C là : 28 - 16 = 12 (cây).

Số cây của lớp 5A là : 43 - 28 = 15 (cây).


Bài 128 : Một dãy có 7 ô vuông gồm 3 ô đen và 4 ô trắng được sắp xếp như hình vẽ.



Cho phép mỗi lần chọn hai ô tùy ý và đổi màu chúng (từ đen sang trắng và từ trắng sang đen). Hỏi rằng nếu làm như trên nhiều lần thì có thể nhận được dãy ô vuông có màu xen kẽ nhau như sau hay không ?



Bài giải :

Nhìn vào hình vẽ ta thấy ở hình ban đầu có 3 ô đen và 4 ô trắng, còn hình lúc sau có 4 ô đen và 3 ô trắng.

Khi chọn hai ô tùy ý để đổi màu của chúng (từ đen sang trắng và từ trắng sang đen) thì có ba khả năng xảy ra :

- Chọn hai ô trắng : Khi đó hai ô trắng được chọn sẽ đổi thành hai ô đen, do đó số ô đen tăng lên 2 ô.

- Chọn hai ô đen : Khi đó hai ô đen được chọn sẽ đổi thành hai ô trắng, do đó số ô đen giảm đi 2 ô.

- Chọn một ô đen và một ô trắng : Khi đó ô trắng đổi thành ô đen và ô đen đổi thành ô trắng, do đó số ô đen giữ nguyên.

Do vậy khi thực hiện việc chọn hai ô để đổi màu của chúng thì số lượng ô đen hoặc tăng lên 2 ô, hoặc giảm đi 2 ô, hoặc giữ nguyên. Điều đó có nghĩa là nếu chọn hai ô tùy ý và đổi màu chúng nhiều lần thì số ô đen vẫn luôn luôn là một số lẻ.

Vì hình sau có 4 ô đen nên không thể thực hiện được.


Bài 129 : Một tờ giấy hình chữ nhật được gấp theo đường chéo như hình vẽ. Diện tích hình nhận được bằng 5/8 diện tích hình chữ nhật ban đầu. Biết diện tích phần tô màu là 18 cm2. Tính diện tích tờ giấy ban đầu.

Bài giải :

Khi gấp tờ giấy hình chữ nhật theo đường chéo (đường nét đứt) thì phần hình tam giác được tô màu bị xếp chồng lên nhau. Do đó diện tích hình chữ nhật ban đầu lớn hơn diện tích hình nhận được chính là diện tích tam giác được tô màu.

Diện tích hình chữ nhật ban đầu giảm đi bằng 1 - 5/8 = 3/8 diện tích hình chữ nhật ban đầu.

Do vậy diện tích tam giác tô màu bằng 3/8 diện tích hình chữ nhật ban đầu, hay 3/8 diện tích hình chữ nhật ban đầu bằng 18 cm2.

Vậy diện tích hình chữ nhật ban đầu là : 18 : 3/8 = 48 (cm2)
Bài 130. Chứng tỏ rằng kết quả của phép nhân sau :

3 x 3 x 3 x ... x 3 (2000 thừa số 3) là số có ít hơn 1001 chữ số.

Lời giải.

Trong tích số A = 3 x 3 x 3 x ... x 3 gồm 2000 thừa số 3, kết hợp từng cặp số 3 được A = (3 x 3) (3 x 3) ... (3 x 3) = 9 x 9 x ... x 9 gồm 1000 thừa số 9.

Xét số B = 9 x 10 x ...x 10 thừa số 10 nên số B = 90...0 có 999 chữ số 0 và 1 chữ số 9, nghĩa là có 1000 chữ số.

Vì 9 < 10 nên A = 9 x 9 x ... x 9 < B = 9 x10 x ... x 10

Vậy số A có ít hơn 1001 chữ số.

Bài 131. Tính diện tích hình chữ nhật ABCD. Biết rằng diện tích phần màu vàng là 20cm2 và I là điểm chia AB thành 2 phần bằng nhau.

Lời giải.

Kí hiệu S là diện tích của một hình. Nối D với I. Qua I và C vẽ các đường thẳng IP và CQ vuông góc với BD, IH vuông góc với DC.




Ta có SADB = SCDB = 1/2 SABCD SDIB = 1/2 SADB (vì có chung đường cao DA, IB = 1/2 AB), SDIB = 1/2 SDBC.

Mà 2 tam giác này có chung đáy DB

Nên IP = 1/2 CQ. SIDK = 1/2 SCDK (vì có chung đáy DK và IP = 1/2 CQ)

SCDI = SIDK + SDKC = 3SDIK.

Ta có : SADI = 1/2 AD x AI, SDIC = 1/2 IH x DC

Mà IH = AD, AI = 1/2 DC, SDIC = 2SADI nên SADI = 3/2 SDIK

Vì AIKD là phần được tô màu vàng nên SAIKD = 20(cm2)

SDAI + SIDK = 20(cm2)


SDAI + 2/3 SADI = 20(cm2)

SDAI = (3 x 20)/5 = 12 (cm2)

Mặt khác SDAI = 1/2 SDAB (cùng chung chiều cao DA, AI = 1/2 AB)

= 1/4 SABCD suy ra SABCD = 4 x SDAI = 4 x 12 = 48 (cm2).


Bài 132. Nếu trong một tháng nào đó mà có 3 ngày thứ bảy đều là các ngày chẵn thì ngày 25 của tháng đó sẽ là ngày thứ mấy ?

Lời giải.

Cách 1. Trong một tháng nào đó có ba ngày thứ bảy là ngày chẵn thì chắc chắn còn có hai ngày thứ Bảy là ngày lẻ. Năm ngày thứ Bảy đó sắp xếp như sau :

Thứ Bảy (1) chẵn

Thứ Bảy (2)   lẻ

 

Thứ Bảy (3) chắn

Thứ Bảy (4)   lẻ

Thứ Bảy (5) chẵn

Số ngày nhiều nhất trong một tháng là 31 ngày. Tháng này có 4 tuần và 3 ngày. Nếu thứ bảy đầu tiên là ngày mùng 4 thì tháng đó sẽ có số ngày là: 4 + 7 x 4 = 32 (ngày) ; trái với lịch thông thường.

Vì thế thứ bảy đầu tiên (1) phải là ngày mùng 2; thứ 7 thứ tư sẽ là ngày: 2 + 7 x 3 = 23

Vậy ngày 25 của tháng đó là ngày thứ hai.



Cách 2. Lập bảng theo tuần lễ :


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

 

 

 

 

Trong 3 cột đầu tiên chỉ có cột 2 thích hợp với đầu bài toán. Cột này có 5 ngày thứ bảy. Vì ngày 23 là thứ bảy, nên ngày 25 là thứ hai.
1   2   3   4   5   6   7


Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2016
được sử dụng cho việc quản lý

    Quê hương