TIÊu chuẩn ngành 22 tcn 274-2001


Bảng 3.7. Các hệ số tăng trưởng xe *



tải về 0.89 Mb.
trang3/12
Chuyển đổi dữ liệu11.08.2016
Kích0.89 Mb.
#17170
1   2   3   4   5   6   7   8   9   ...   12

Bảng 3.7. Các hệ số tăng trưởng xe *

Thời kỳ phân tích (năm)

Tỉ lệ tăng trưởng hàng năm g (%)

Số tăng trưởng

2

4

5

6

7

8

10

1

2

3



4

5

6



7

8

9



10

11

12



13

14

15



16

17

18



19

20

25



30

35


1,0

2,0


3,0

4,0


5,0

6,0


7,0

8,0


9,0

10,0


11,0

12,0


13,0

14,0


15,0

16,0


17,0

18,0


19,0

20,0


25,0

30,0


35,0

1,0

2,02


3,06

4,12


5,20

6,31


7,43

8,58


9,75

10,95


12,17

13,41


14,68

15,97


17,29

18,64


20,01

21,41


22,84

24,30


32,03

40,57


49,99

1,0

2,04


3,12

4,25


5,42

6,63


7,90

9,21


10,58

12,01


13,49

15,03


16,63

18,29


20,02

21,82


23,70

25,65


27,67

29,78


41,65

56,08


73,65

1,0

2,05


3,15

4,31


5,53

6,80


8,14

9,55


11,03

12,58


14,21

15,92


17,71

19,16


21,58

23,66


25,84

28,13


30,54

33,06


47,73

66,44


90,32

1,0

2,06


3,18

4,37


5,64

6,98


8,39

9,90


11,49

13,18


14,97

16,87


18,88

21,01


23,28

25,67


28,21

30,91


33,76

36,79


54,86

79,06


111,43

1,0

2,07


3,21

4,44


5,75

7,15


8,65

10,26


11,98

13,82


15,78

17,89


20,14

22,55


25,13

27,89


30,84

34,00


37,38

41,00


63,25

94,46


138,24

1,0

2,08


3,25

4,51


5,87

7,34


8,92

10,64


12,49

14,49


16,65

18,98


21,50

24,21


27,15

30,32


33,75

37,45


41,45

45,76


73,11

11,28


172,32

1,0

2,10


3,31

4,64


6,11

7,72


9,49

11,44


13,58

15,94


18,53

21,38


24,52

27,97


31,77

35,95


40,55

45,60


51,16

57,28


98,35

164,49


271,02

* Hệ số , trong đó g = tỉ lệ tăng trưởng /100 ≠ 0, nếu tỉ lệ tăng trưởng hàng năm bằng 0 thì hệ số tăng trưởng bằng thời kỳ phân tích.

Ghi chú: Hệ số tăng trưởng nói trên được nhân với số lượng xe tính được ở năm đầu tiên sẽ được tổng lượng xe trong suốt thời kỳ phân tích.

Từ các số liệu giao thông sẵn có, số xe khách (5,925) đưa vào cột A, tiếp theo đó là số xe buýt (35). Dùng tổng số xe đếm được để cân bằng số liệu đầu vào của cột A, chỉ dùng dữ liệu của năm hiện tại. Đối với ví dụ này, 1,135 xe tải (xe pickup), 3 xe tải 2 trục/4 bánh, 372 xe tải 2 trục/6 bánh v.v…được đưa vào cho kín cột A.

Bằng 3.6 đưa ra các tiêu chuẩn để lựa chọn giá trị cho cột B. Tỉ lệ tăng trưởng 2% ước tính cho xe khách và xe buýt cũng như cho xe tải không rơ moóc. 4% cho xe kéo bán rơ moóc và rơ moóc và 5% cho xe rơ moóc kép. Kinh nghiệm trước đây cho thấy những ước tính này là thông thường. Bằng cách sử dụng các hệ số tăng trưởng phù hợp đưa ra trong cột B, và nhân cột A với cột B sau đó nhân tiếp với 365 để biến chúng thành số hàng năm ta được cột C. Cuối cùng, bằng cách nhân số ở cột C với giá trị ở cột D thì ra cột E. Tính tổng của cột E thì ra tổng giá trị ESAL 80kN. Qua ước tính thì tổng số ESAL thiết kế hiện nay là 53,7 triệu, nhiều hơn khoảng 23% nếu tỉ lệ tăng trưởng toàn bộ giới hạn ở mức 2%.

Nếu giả thiết tăng tỉ lệ tăng trưởng lên 4% cho xe khách và xe tải không có rơ moóc và 6% cho xe bán rơ moóc và xe kéo rơ moóc, 7% cho xe rơ moóc kép thì tổng tải trọng trục đơn tương đương là 66.4 triệu, hay nói cách khác tăng khoảng 50% so với kết quả của ví dụ đầu tiên.

Nếu giả thiết là đường ô tô ngoài đô thị có 4 làn xe và các hệ số phân chia theo hướng và làn tương ứng là 0.5 và 0.9, ước tính giao thông theo làn thiết kế được tính như sau:

0.5 x 0.9 x 53,726,060 = 24,176,727 80kN ESAL



3.7. NHỮNG ĐIỂM CHÍNH RÚT RA TỪ CÁC VÍ DỤ TÍNH TOÁN

Vị trí của đường trong ví dụ này là một đường ô tô ngoài thành phố với lưu lượng xe/ngày đêm trung bình là 10.193. Gồm có 58% xe khách, 30% xe tải chở hàng, và 12% xe tải hạng nhẹ và xe buýt. Trong các nghiên cứu tải trọng xe gần đây của thực tế hoạt động của các xe cộ trên đường đã đưa ra được các giá trị ESAL của xe khách và xe buýt tăng lên bằng cách dùng hệ số tải trọng tương đương cho mỗi loại xe lấy từ thực nghiệm đường của AASHTO.

Khi dùng tỉ lệ tăng trưởng xe ở mức thấp là 2% mỗi năm cho toàn bộ dòng xe tham gia giao thông thì có khoảng 44 triệu 18-kip ESAL sẽ được áp dụng cho đường. Việc tăng tỉ lệ tăng trưởng từ 2% đến 4 hoặc 5% áp dụng cho các loại xe khác với xe tải đơn (xe tải nặng hơn) sẽ làm tăng tổng ESAL lên tới khoảng 54 triệu, tức là tăng khoảng 23%. Bằng cách tăng mạnh hơn tỉ lệ tăng trưởng lên 4% cho xe hạng nhẹ. 7% cho các xe nặng hơn thì tổng tải trọng trục đơn tương đương 18-kip (ESAL) sẽ khoảng 66 triệu, tăng 52% so với khi tỉ lệ tăng trưởng là 2%.

Thật thú vị ghi nhận rằng ở mức tăng trưởng vừa phải từ 2% đến 5%, với xe tải bán rơ moóc được ước tính mức tăng trưởng 4% thì chỉ cần một loại xe thôi đã có thể gây ra sai khác khoảng 26.000 của 80kN ESAL được khi tính từ lượng xe hàng ngày. Cũng như vậy, với xe tải 5 trục hoặc xe bán rơ moóc lớn hơn chiếm khoảng 18% dòng xe, nhưng ước tính chiếm 90% ESAL. Thậm chí khi mức tăng trưởng là 6% thì loại xe này sẽ tăng lên 21% trong tổng số xe sử dụng đường trong thời kỳ phân tích, và vẫn chiếm 90% ESAL. Những người thiết kế nên điều tra xem mức tăng trưởng khác nhau của các loại xe khác nhau có phù hợp không.



Bảng 3.8. Ví dụ về cách tính ESAL 80kN cho dòng xe hỗn hợp

Loại xe




Tỷ lệ tăng trưởng xe (B)

Lượng xe thiết kế (C)

Yếu tố ESAL (D)

ESAL thiết kế (E)

Xe khách


Ôtô buýt

5,925


35

2%

24,30


24,30

52,551,787

310,433

.0008


.6806

42,011


211,280

Xe tải quảng cáo và tải nhẹ

Các xe tải 2 trục – 4 bánh

Các xe tải 2 trục – 6 bánh

Các xe tải 3 hoặc nhiều hơn 3 trục

Tổng số các xe tải đơn


1,135


3

372


34

2%

24,30


24,30

24,30


24,30

10,066,882

26,609

3,299,454



301,563

.0122

.0052


.1890

.1303

122,816

138


623,597

39,294

Sơ mi moóc 3 trục kéo theo

Sơ mi moóc 4 trục kéo theo

Sơ mi moóc 5 trục kéo theo

Tổng số cho các sơ mi moóc kéo theo


19

49



1,880


4%

29,78


29,78

29,78

206,524

532,615


20,435,036

.8646


.6560

2.3719

178,561

349,396


48,469,861

Moóc kép 5 trục

Moóc kép 6 trục

Tổng các xe moóc kép


103


0

5%

33,06

1,242,891

2.3187

2,881,891

Moóc tải 3 trục

Moóc tải 4 trục

Moóc tải 5 trục

Tổng số các moóc tải

208


305

125



4%

29,78


29,78

29,78

2,260,898

3,315,259

1,358,713

.0152


.0152

.5317

34,366

50,392


722,427

Tổng số cho các xe

10,193




95,908,664

ESAL thiết kế

53,726,060

CHƯƠNG 4. ĐẤT NỀN ĐƯỜNG

4.1. GIỚI THIỆU

Hầu hết các loại đất được đầm nén đều có xu hướng trương nở khi bị thấm nước. Khi đất trương nở và chứa nước, khả năng chịu tải giảm. Mức độ trương nở do tăng độ ẩm và giảm độ chặt bị hạn chế bởi tải trọng bản thân của các lớp vật liệu kết cấu mặt đường đặt trên nền đất. Khi áp lực do tải trọng của vật liệu bên trên và các lực trương nở của đất bằng nhau thì việc trương nở bị ngưng lại và cường độ không bị giảm nữa. Sau đó đất ở trong trạng thái bất ổn nhất với áp lực do tải trọng bản thân của các lớp kết cấu mặt đường nằm ở trên. Theo các điều kiện này, chiều dày và cường độ thiết kế của các kết cấu phải đủ để bảo vệ nền đất tránh được biến dạng không đều hay trượt do tải trọng động của xe cộ. Hơn nữa chiều dày của các lớp kết cấu mặt đường cần có áp lực bản thân đủ lớn để ngăn ngừa sự giãn nở tiếp tục dẫn đến giảm độ ổn định. Tính chất quyết định của vật liệu đặc trưng cho cường độ đất nền đường là mô đun đàn hồi (MK).

Mô đun đàn hồi là số đo đặc tính đàn hồi của đất thừa nhận các đặc tính phi tuyến nào đó. Mô đun đàn hồi có thể được dùng trực tiếp để thiết kế mặt đường mềm, nhưng phải chuyển đổi sang một hệ số nền (giá trị k) khi thiết kế mặt đường cứng và mặt đường hỗn hợp. Cách đo trực tiếp phản lực nền có thể được thực hiện nếu các bước tiến hành được cơ quan thiết kế chấp nhận.

Mô đun đàn hồi đã được chọn dùng là vì các lý do sau đây:

(1) Nó biểu thị đặc tính cơ bản của vật liệu dùng trong phân tích cơ học của hệ nhiều lớp để dự đoán độ gồ ghề, nứt, lún, đứt gãy v.v…

(2) Phương pháp xác định MR được mô tả trong phương pháp thí nghiệm của AASHTO T292.

(3) Nó đã được công nhận trên toàn thế giới như là một phương pháp để biểu thị đặc tính vật liệu dùng trong thiết kế và đánh giá mặt đường.

(4) Hiện đã có kỹ thuật để xác định giá trị MR của các vật liệu khác nhau bằng thí nghiệm không phá hoại tại hiện trường (NDT).

Sử dụng sơ đồ Hình 9.3 để xác định mô đun đàn hồi hữu hiệu đất nền đường là rất hữu ích ở Việt Nam. Điều này cũng là một vấn đề cần nghiên cứu trong tương lai ở Việt Nam.

Dễ thấy rằng thiết bị để thực hiện thí nghiệm mô đun đàn hồi có thể đôi lúc không có. Vì thế nhiều hệ số thích hợp đã được công bố để có thể tính MR từ CBR tiêu chuẩn, từ các kết quả thí nghiệm loại đất hay từ các giá trị khác. Sự phát triển các hệ số này được rút ra dựa trên các mối tương quan đã nghiên cứu. Một điều cần phải nhấn mạnh là Bộ GTVT nên có các thiết bị cần thiết để đo MR. Trong bất kỳ trường hợp nào thì công tác thiết kế quy hoạch thực nghiệm tỷ mỉ là cần thiết để thu được các mối tương quan xác thực. Danh sách các loại đất, độ bão hòa và độ chặt phải được đưa vào trong chương trình thí nghiệm để xác định các ảnh hưởng chính. Hướng dẫn để chuyển đổi CBR thành MR đã được thảo luận trong chương này. Các mối tương quan này sẽ được dùng để tính MR trong công tác thiết kế mặt đường, cho đến khi thiết lập được các giá trị hệ số chuyển đổi trên toàn quốc.

Heukelom và Klomp đã đưa ra mối tương quan giữa giá trị CBR của hội các kỹ sư Mỹ (sử dụng đầm nén động) và mô đun tại hiện trường của đất. Mối tương quan được đưa ra bằng quan hệ dưới đây:

Mk (psi) = 1,500 x CBR (1 psi = 6,9 kPa)

Số liệu mà từ đó mối tương quan này được triển khai ra nằm trong khoảng từ 750 đến 3.000 lần CBR. Quan hệ này đã được những người thiết kế và các nhà nghiên cứu sử dụng rộng rãi và được xem là hợp lý đối với đất hạt mịn có CBR ngậm nước là ≤ 10. Giá trị CBR phải tương ứng với độ chặt yêu cầu tại hiện trường.

Việc thảo luận này đã tổng hợp các ước tính về việc quy đổi CBR thành mô đun đàn hồi cho đất nền đường. Hình 4.1 cho phép người thiết kế tìm thấy mối tương quan của các phương pháp khác nhau về đo cường độ đất.

Có hàng loạt các mối tương quan khác nhau để quy đổi CBR thành MR. Bảng tổng kết các mối tương quan này theo các điều kiện phù hợp được nêu tại phụ lục D.

Việc thi công lớp nền đất dưới đáy áo đường phải được cân nhắc cẩn thận vì nó liên quan đến cường độ của mặt đường. Để cải thiện độ tin cậy tổng thể của thiết kế thì cần phải xem xét các yêu cầu về đầm lèn. Đối với các điều kiện trung bình, không cần thiết phải quy định các yêu cầu đặc biệt về đầm lèn. Tuy nhiên trong một vài trường hợp người thiết kế nêu yêu cầu các sửa đổi trong quy định kỹ thuật cho phù hợp.

Tiêu chuẩn cơ bản về đầm nén đất nền ở đáy áo đường phải là yêu cầu độ chặt thích hợp. Quy trình kiểm tra phải đầy đủ để đảm bảo đạt được độ chặt quy định trong qui trình thi công. Nếu vì lý do nào đó mà yêu cầu đầm đất cơ bản không đạt thì kỹ sư thiết kế phải điều chỉnh lại MR thiết kế cho thích hợp.

Các loại đất có độ trương nở hay đàn hồi vượt quá mức thì cần được xem xét cẩn thận. Có một giải pháp đó là rải lên trên nền đất này một lớp vật liệu chọn lọc với chiều dày vừa đủ để khắc phục các ảnh hưởng có hại do sự trương nở hay đàn hồi. Đất trương nở có thể được cải tạo bằng cách đầm ở độ ẩm lớn hơn độ ẩm tối ưu từ 1-2%. Nếu đất được xác định là trương nở mạnh thì phải xem xét đưa ra các biện pháp thiết kế và thi công đặc biệt. Các phương án thiết kế thay thế dùng để xử lý đất trương nở là:





Hình 4.1. Toán đồ tương quan để đánh giá mô đun đàn hồi đất nền đường

(a) Xử lý đất trương nở bằng vôi hay các chất phụ gia khác để giảm độ nở trong môi trường ẩm, hoặc

(b) thay thế vật liệu nở bằng một vật liệu không nở tới một độ sâu nào đó, để đến độ sâu ấy độ ẩm theo mùa gần như là không đổi, hoặc

(c) đưa ra các kết cấu bên trên với chiều dày vừa đủ để chống lại áp suất trương nở bằng áp suất tải trọng bản thân, hoặc

(d) sử dụng thi công theo 2 giai đoạn bằng cách đặt một kết cấu mỏng để lớp vật liệu ở dưới có thể nở ra và ổn định trước khi rải lớp bù vênh và các lớp mặt, hoặc

(e) làm ổn định hàm lượng ẩm bằng cách giảm tối thiểu lượng nước chảy qua lớp mặt và lớp thoát nước dưới lớp mặt và dùng một loại màng không thấm nước (ví dụ vải địa kỹ thuật hoặc màng mỏng átphan tráng cau su), hoặc

(f) đặt lại hướng tuyến của dự án sang vùng có điều kiện đất thích hợp hơn.

Cách xử lý (a), (b), (c), (d) cần được áp dụng thận trọng vì độ nở của đất quá lớn ngoài ý muốn đã xuất hiện ở một số dự án được áp dụng các phương pháp này. Cách xử lý (e) được coi là giải pháp xử lý tốt nhất nếu phương pháp đặt lại hướng tuyến không khả thi.

Những vấn đề do đất có hàm lượng hữu cơ cao liên quan đặc biệt đến bản chất chịu nén của chúng và càng nghiêm trọng khi các lớp đất này không đồng nhất về đặc tính hoặc độ sâu. Các lớp đất hữu cơ trầm tích cục bộ hoặc nằm không sâu được đào bỏ đi và thay thế bằng vật liệu đắp thích hợp là kinh tế nhất. Các vấn đề xảy ra liên quan đến các lớp đất trầm tích nằm sâu hơn và khả năng trương nở cao hơn được xử lý bằng cách đắp lớp đất gia tải để nền cố kết trước, đôi khi bằng các biện pháp đặc biệt làm thoát nhanh nước nhanh để thúc đẩy việc cố kết.

Các biện pháp đặc biệt đối với các loại đất không bình thường là: xới đất, đầm lại đất, xử lý lớp trên của đất nền đường bằng một hỗn hợp phụ gia thích hợp; dùng các loại đất phù hợp hơn (lựa chọn hoặc lấy ở mỏ đất); đào sâu hơn ở các đoạn đào và đắp một lớp đồng nhất bằng vật liệu chọn lọc ở cả đoạn đào cũng như ở đoạn đắp; hoặc điều chỉnh chiều dày lớp móng dưới tại các chỗ chuyển tiếp từ loại đất này sang một loại đất khác.

Mặc dù các bước thiết kế dựa trên giả thiết rằng các biện pháp sẽ được thực hiện để thoát nước lớp mặt và lớp dưới lớp mặt, một vài trường hợp đòi hỏi chú ý đặc biệt khi thiết kế và thi công hệ thống thoát nước. Thoát nước đặc biệt quan trọng ở những chỗ các dòng chảy mạnh bị chặn lại (ví dụ: suối, lạch…), những chỗ có tuyết phủ, hoặc những chỗ mà khi hàm lượng nước tăng thì đất rất để bị trương nở hoặc giảm cường độ. Công trình thoát nước dưới lớp mặt có thể gồm cả các lớp phụ bằng vật liệu thấm nước để ngăn hoặc thu nước, lắp đặt ống thoát nước để thu và dẫn nước. Công trình thoát nước mặt đặc biệt có thể đòi hỏi các kết cấu như: rãnh, rãnh lát đáy và hố thu nước.

Các loại đất nền đường nhất định gây nên những vấn đề khó khăn trong thi công. Đó là các loại đất dễ dàng dịch chuyển dưới tác động của máy móc thi công mặt đường, các loại đất sét ướt không thể đầm được khi độ ẩm cao vì dễ bị lún trồi khi lu lèn và đòi hỏi phải mất nhiều thời gian để làm khô đất để đạt tới độ ẩm thích hợp. Các biện pháp xử lý khi thi công là:

● trộn thêm vật liệu hạt vào.

● thêm các phụ gia thích hợp vào cát để tăng độ kết dính.

● thêm các phụ gia thích hợp vào sét để làm khô nhanh hoặc tăng cường độ chống cắt và rải một lớp bằng vật liệu chọn lọc thích hợp hơn để tạo ra một mặt nền làm việc khi thi công mặt đường.

Nếu đất không trương nở, MR thiết kế dựa trên giả thiết trước là có một số thời gian đất sẽ bão hòa nước trong quá trình phục vụ. Giả thiết này dẫn đến cường độ thấp nhất của đất chắc chắn sẽ xảy ra trong thời gian này. Việc sử dụng hệ thống thoát nước tốt ở đáy áo đường và ở các lớp kết cấu sẽ làm giảm thiểu thời gian đất có cường độ thấp do ngập nước. Một hệ thống thoát nước tốt trong phần kết cấu đã nêu trong mục 6.2 và 6.3 sẽ giảm thiểu các hư hại của kết cấu do nước gây nên.

Giá trị mô đun đàn hồi của đất nền dùng để thiết kế kết cấu mặt đường thông thường dựa vào các đặc tính của lớp đất đã đầm nén. Trong một vài trường hợp cần thiết phải xem xét đến việc nền không đầm nén được nếu vật liệu tại hiện trường đặc biệt yếu. Cần phải ghi nhớ rằng việc thiết kế kết cấu mặt đường theo cuốn tiêu chuẩn này là dựa trên giá trị MR trung bình. Mặc dù độ tin cậy đã tính đến được những thay đổi của nhiều nhân tố gắn liền với thiết kế, nó được xử lý bằng cách điều chỉnh lưu lượng giao thông thiết kế. Lượng xe thiết kế là tải trọng trục đơn tương đương 80 kN được dự tính trong suốt thời kỳ thiết kế. Kỹ sư thiết kế không được chọn giá trị MR thiết kế chỉ dựa trên các tiêu chuẩn tối thiểu hoặc theo các tiêu chuẩn quá an toàn vì điều này sẽ dẫn đến sự an toàn trong thiết kế vượt xa độ an toàn theo các hệ số độ tin cậy.

4.2. XÁC ĐỊNH MR THIẾT KẾ

Các giá trị MR hay CBR của đất cần cho dự án được đưa vào Báo cáo Vật liệu. Thay đổi đáng kể về các giá trị này trong phạm vi một dự án là điều phổ biến. Vì giá trị MR thiết kế phải được lựa chọn để thiết kế kết cấu, nên điều quan trọng là phải biết được phạm vi quy định của vật liệu bởi các thí nghiệm khác nhau.

Vì sự thay đổi lớn của các loại vật liệu và nền trầm tích có trong phạm vi dự án là rất phổ biến nên việc thiết lập các quy tắc nhanh và cứng nhắc đối với việc lựa chọn một giá trị MR thiết kế là không thực tế. Việc cung cấp một hệ thống thoát nước hiệu quả như đã được thảo luận ở Chương 6, cho phép người thiết kế linh hoạt hơn trong việc lựa chọn MR thiết kế.

Việc đánh giá dựa vào kinh nghiệm nên được làm để đảm bảo chắc chắn “việc thiết kế đã được cân nhắc” một cách hợp lý, và sẽ tránh được chi phí vượt quá do an toàn quá mức. Những thiết kế đã làm chỉ nên được sử dụng như là những chỉ dẫn của việc thực hiện tốt hay kém.

Nếu phạm vi của MR là nhỏ hoặc hầu hết các giá trị đều ở trong một phạm vi hẹp với một vài giá trị cao hơn không đáng kể, thì MR thấp nhất nên được lựa chọn cho thiết kế kết cấu. Tuy nhiên, MR thấp nhất không nên nhất thiết chi phối việc thiết kế kết cấu trên toàn chiều dài của các dự án lớn. Nếu có một số ít các giá trị MR thấp và chúng chỉ đại diện cho khối lượng tương đối nhỏ của đất nền hoặc chỉ tập trung tại một diện tích nhỏ thì có thể quy định chỉ sử dụng vật liệu này dưới đáy của nền đường đắp hoặc ở những phần taluy bên ngoài giới hạn kết cấu mặt đường. Thông thường gia cố vôi trên các đoạn ngắn có thể cho hiệu quả về chi phí. Các thí nghiệm tiến hành tại Mỹ đã chỉ ra rằng việc sử dụng vải địa kỹ thuật có thể cho phép người thiết kế chọn một giá trị MR cao hơn trong thiết kế kết cấu mặt đường ở những vị trí mà đất nền đường có thể thay đổi và những khu vực cá biệt có giá trị M­R­ vật liệu thấp (< 725KPa). Rải vải địa kỹ thuật dưới kết cấu mặt đường sẽ nâng cao chất lượng lớp nền bằng cách lấp các khu vực đất yếu và ngăn cách các hạt mịn ở nền yếu phía dưới chui lên vật liệu chất lượng tốt của lớp móng dưới hay lớp móng trên.

Ở những nơi cấu tạo địa chất và các loại đất thay đổi dọc theo dự án thì việc thiết kế nhiều loại kết cấu mặt đường để hiệu chỉnh các chênh lệch lớn trong MR có thể cho hiệu quả về kinh tế. Tuy nhiên cần phải đặc biệt chú ý tránh các thay đổi lớn trong thiết kế kết cấu mà thực tế có thể làm tăng chi phí xây dựng, chi phí vượt quá cả mức chi phí do tiết kiệm vật liệu.



4.3. ĐẤT ĐẮP

Đất đắp tại chỗ hay chuyển từ bên ngoài vào được dùng để bù vào sự thiếu hụt khối lượng vật liệu đào ra khi xây dựng nền đường. MR của vật liệu đào của dự án thường được quy định như MR tối thiểu của đất đắp. Khi đất đắp đảm bảo chất lượng nhưng không kinh tế hay khi toàn bộ công tác đất là đắp đất, giá trị MR yêu cầu cho đất đắp là MR thiết kế. Vì không có yêu cầu trị số MR tối thiểu cho đất đắp tại chỗ trong tiêu chuẩn thi công, nên MR tối thiểu phải được quy định từ điều khoản đặc biệt (SP) cho lớp vật liệu được rải trong phạm vi 1,2m kể từ cao độ thiết kế.




tải về 0.89 Mb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5   6   7   8   9   ...   12




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương