The art of air blast freezing: Design and efficiency considerations



tải về 1.05 Mb.
Chế độ xem pdf
trang9/15
Chuyển đổi dữ liệu21.11.2023
Kích1.05 Mb.
#55716
1   ...   5   6   7   8   9   10   11   12   ...   15
The art of air blast freezing Design and
LEO PHAM, Document, Email sample
total;SC
(17)
The NTU over the sub-cooling section is calculated by:
NTU
SC
¼
UA
model;SC
_C
min
(18)
The rate of heat transfer over the sub-cooling section is deter-
mined by:
_q
SC
¼ ε
SC
_C
min
ð
T
Ref ;sat
T
air;in
Þ
(19)
The enthalpy of the refrigerant leaving the condenser is deter-
mined by an energy balance across on the refrigerant side:
h
out
¼ h
sat;x¼0
_q
SC
_
m
3
(20)
Finally, the total rate of heat transfer across the condenser is
determined by:
_q
cond;total
¼ _q
SH
q
2Ph
þ _q
SC
(21)
If F
SC
(from Eq.
(15)
) is less than one, the refrigerant leaves the
condenser in a saturated state. Under these conditions the refrig-
erant enthalpy at the condenser outlet is calculated in the same
manner as described for the sub-cooling zone.
10.3. Evaporator model
The two-stage blast freezer has two identical wavy fin-and-tube
evaporators with a staggered tube layout. Each evaporator has
three TXV’s with a distributor further dividing the flow into 15
tubes, i.e. 15 tubes per TXV. This equates to 45 tubes per evaporator.
Each tube has four passes.
The evaporator is modelled in the same manner as the
condenser. The evaporator is divided into zones corresponding to
the refrigerant state. The refrigerant enters the evaporator in two-
phase state and leaves superheated. The air-side heat transfer
coefficient is calculated for a six row heat exchanger, same as the
condenser. The remaining resistances are calculated for four rows.
10.4. Expansion valves model
The six evaporator expansion valves and the intercooler
expansion valve are all of the mechanically controlled thermostatic
type, TXV. The throttling of the liquid refrigerant is achieved by
assuming the expansion is enthalpic.
10.5. Intercooler model
The intercooler could not be modelled physically like the heat
exchangers because the geometric data was unavailable. Therefore,
a thermodynamic model is used to simulate the desuperheating
and sub-cooling processes of the intercooler.
Fig. 6
a shows the log P-h diagram of the two-stage system with
the state points used for modelling. State points 1, 2, 4, 5, 6 and the
mass flow rates _m
evap
_
m
cond
and _
m
evap
are calculated from the
compressor, condenser and expansion valve models coupled with
the evaporating and condensing pressures given as model inputs.
The intermediate pressure is calculated as the geometric mean of
the condensing and evaporating pressures given by:
P
int
¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
evap
$P
cond
q
(22)
State point 3 is determined from the fraction of superheat x,
given by
h
3
¼ x
h
2
h
sat;P
int

(23)
where
0 <  1
(24)
The fraction of superheat is determined from the experimental
data and can be adjusted for parametric analysis. The enthalpy at
state point 7 is determined from an energy balance across the
intercooler:

tải về 1.05 Mb.

Chia sẻ với bạn bè của bạn:
1   ...   5   6   7   8   9   10   11   12   ...   15




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương