Synthesis of design and construction practices


Number of Equivalent 10-ton Axles (million)



tải về 1.81 Mb.
Chế độ xem pdf
trang16/42
Chuyển đổi dữ liệu13.04.2022
Kích1.81 Mb.
#51624
1   ...   12   13   14   15   16   17   18   19   ...   42
09-cr2
[123doc] - phat-trien-nguon-nhan-luc-cua-cong-ty-co-phan-misa-doc
Number of Equivalent 10-ton Axles (million) 

Layer 

0.2 0.5  1  2  5  10 20 50 

E = 2,500 MPa (362.6 ksi) 

Asphalt 

surface and 

binder 

Thickness in mm (in) 

60 

(2.5) 


80 

(3.5) 


Allowable initial strain

μstr  65 57 51   

 

 

  



  

  

  



215 235 245 

CTB with 

E

initial


 = 

12,000 MPa 

Required thickness, mm (in) 

(8.5) (9.3) (9.6) 

  

  

  



  

  

Allowable initial strain, 



μstr 

  

  



 

75 69 62 57 52 47 

150 165 180 190 205 225 

CTB with 

E

initial


 = 

16,000 MPa 

Required thickness, mm (in) 

  

  



(5.9) (6.5) (7.1) (7.5) (8.0) (8.9) 

Gravel base 

E = 300 MPa (43.5 ksi) 

Thickness 150 mm (5.9 in) 

Subbase 

E = 100 MPa (14.5 ksi) 

Thickness minimum 200 mm (7.9 in) 

Subgrade 

E = 40 MPa (5.8 ksi) 



 



 

Composite Pavement Performance 

 

A composite pavement structure, throughout its service life, may develop different types 



of distresses.  The distresses that affect composite pavements, according to Von Quintus et al. 

(1979), are very similar to those of flexible pavements because of the exposure that the asphalt 

concrete layer has in the composite structure.  The distresses may be grouped into three major 

categories: fracture (cracking), distortion, and disintegration.  All of the mentioned distresses 

could potentially affect the performance and structural capacity of composite pavements.   

However, the majority could be mitigated with a high-quality HMA mix, adequate overall 

structural design, and appropriate constructive procedures.   

 

Several research studies (Von Quintus, 1979; Smith et al., 1984; NCHRP, 2004) have 



agreed that reflective cracking (also known as reflection cracking) is a major distress type in 

composite pavements.  Reflective cracks are cracks that occur in the asphalt surface course of the 

composite pavement and that coincide with cracks with appreciable width or joints in the 

underlying layer.  They are caused by the relative horizontal and vertical movements of these 

cracks or joints caused by temperature cycles and/or traffic loading. 

 

Reflective cracks are undesirable in a composite pavement structure as they tend to 



undergo a progressive width increase, permitting the leakage of surface water to the layer 

beneath.  This may cause raveling and disintegration of the asphalt surfacing adjacent to the 

cracks (Breemen, 1963).  When a crack has a considerable width, it acts as a joint and high stress 

intensity is generated at this location.  The contraction and expansion of the rigid layer tends to 

open and close this “joint” causing a significant change in width; as a result, the tensile stresses 

induced at the bottom of the HMA surface layer exceed the strength of the asphalt overlay and a 

reflective crack is initiated. 

 



 13

When a chemically stabilized material (CSM) is used as the rigid base (e.g., CTB), drying 

shrinkage during the curing period is a major cause for the cracking of the base.  The reasons that 

contribute to shrinkage cracking occurrence, which then lead to reflective cracks, include 

material characteristics, construction procedures, traffic loading, and restraint imposed on the 

base by the subgrade (Adaska and Luhr, 2004).  

 

The proposed Mechanistic-Empirical Pavement Design Guide (MEPDG) mentions the 



following points regarding the use of CSM base layers (NCHRP, 2004): (1) if there is an HMA 

surface course (composite pavement scenario), any fatigue cracking in the CSM layer will result 

in a fraction of the cracking reflected through the HMA layer; and (2) if a crack relief layer (e.g., 

unbound granular layer) is placed between the HMA and CSM layer, it is possible to minimize 

or potentially eliminate reflective cracking through the HMA layer. 

 

To mitigate and control reflective cracks, various methods and techniques could be used.  



These include the use of crack relief layers, pre-cracking (microcracking) of the cemented base, 

and use of geotextiles (paving fabrics) (Adaska and Luhr, 2004). 




tải về 1.81 Mb.

Chia sẻ với bạn bè của bạn:
1   ...   12   13   14   15   16   17   18   19   ...   42




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương