Synthesis of design and construction practices


Table 1.  Typical Properties of Rigid Bases Used in Spain



tải về 1.81 Mb.
Chế độ xem pdf
trang11/42
Chuyển đổi dữ liệu13.04.2022
Kích1.81 Mb.
#51624
1   ...   7   8   9   10   11   12   13   14   ...   42
09-cr2
[123doc] - phat-trien-nguon-nhan-luc-cua-cong-ty-co-phan-misa-doc
 

Table 1.  Typical Properties of Rigid Bases Used in Spain 

 

Rigid Base 

7-Day Compressive 

Strength 

 

E-modulus 

 

Description 

Soil-Cement 

> 2.5 MPa

a

 

(> 360 psi) 



6,000 to 10,000 

MPa 


(870 to 1,450 

ksi)


b

 

Granular material + cement content 3 to 7% 



Gravel-Cement 

> 4.5 MPa 

(> 650 psi) 

20,000 MPa 

(2,900 ksi) 

No fine material and a dense gradation 

Gravel-Cement 

Type II 


> 8 MPa 

(> 1,160 psi) 

25,000 MPa 

(3,600 ksi) 

Similar to gravel-cement, except for a higher 

cement content 5 to 7% 

Lean-Mix Compacted 

Concrete 

> 12 MPa 

(> 1,740 psi) 

25,000 MPa 

(3,600 ksi) 

Cement content 5 to 10%.  Similar to the 

RCC in the U.S. 

Compacted Concrete 

> 18 MPa 

(> 2,600 psi) 

33,000 MPa 

(4,790 ksi) 

Cement content 10 to 14% 

a

1 MPa = 145.04 psi; 



b

1 ksi = 1,000 psi 



 

 

Composite Pavement Design 

 

This section discusses the various methods currently in use to design composite pavement 



structures. 

 

AASHTO 1993 Guide 

 

The 1993 AASHTO Guide for Design of Pavement Structures can be used to design two 



different composite pavements: (1) a new flexible pavement with a cement-treated (or soil-

cement) base and (2) a rehabilitated PCC pavement using the section in the guide for the design 

of AC overlays of PCC (both jointed plain concrete pavement [JPCP] and continuously 

reinforced concrete pavement [CRCP]). 

 

In the first alternative, it is critical to select a proper layer coefficient, a



2

, for the 

stabilized base to use the flexible SN design equation: 

 

 



1

1

2 2



2

3 3


3

SN a D


m a D

m a D


=

+

+



 

(1)


where 

 

 



SN = structural number 

 

a



1

, a


2

, a


3

 = layer coefficients 

 

m

2



, m

3

 = drainage coefficients 



D

1

, D



2

, D


3

 = thickness of each layer in inches (layer 1 = HMA, layer 2 = base, layer 3 = 

subbase) 



  7

 

A study performed by Richardson (1996) provides a general equation that could be used 



to determine the modulus, E

c

, of various cemented materials (e.g., soil cement, cement-treated 



bases, cement-stabilized soils) and with that, compute the layer coefficient a

2

.  Once the 



cemented material coefficient and all other needed parameters are obtained, the composite 

structure can be designed. 

 

 

( )



0.7784

c

u



E

34.367 2006.8 q

= −

+

 



(2)

 

( )



2

c

a



2.7170 0.49711 Log E

= −


+

×

(3)



where 

 

 



E

c

 = chord modulus (MPa) 



 

q

u



 = unconfined compressive strength (MPa). 

 

The second alternative for using the AASHTO 1993 guide is based on the procedure for 



designing the rehabilitation of PCC pavements with an AC overlay.  In this case, the first step is 

to design a conventional PCC pavement, in other words, compute the thickness to satisfy the 

future traffic demand, D

f

.  Once the slab thickness has been obtained, it could be assumed that 



placing an AC layer with a thickness of approximately 50 mm (2 in) would allow for the 

decrease of 25 mm (1 in) of PCC layer.  This is because the guide’s “AC Overlay of PCC 

Pavement” procedure indicates that the required thickness, D

OL

, of an AC overlay of PCC is 



calculated using the following equation: 

 

 



(

)

OL



f

eff


D

A D


D

=



 

(4)


 

Where 


 

 

A = factor to convert PCC thickness deficiency to AC overlay thickness 



 

D

f



 = slab thickness to carry future traffic (in) 

 

D



eff

 = effective thickness of existing slab (in). 

 

Therefore, two assumptions are made.  First, in a new composite pavement design, D



eff

 is 


equal to D

f

 because it is appropriate to assume that a newly constructed PCCP would not have 



any distress, thus none of the adjustment factors shown in Equation 5 would be applicable. 

 

 



eff

jc

dur



fat

D

F



F

F

D



=

×

×



×

 

(5)



  

Where 


 

 

D = original slab thickness (this would be equal to the thickness of the rigid base) 



 

F

jc



, F

dur


, F

fat


 = adjustment factors for joints and cracks, durability, and fatigue = 1. 

 

The second assumption involves the A factor from Equation 4.  According to the guide, 



the A factor is computed using the following equation: 

 



  8

 

(



)

(

)



2

f

eff



f

eff


A 2.2233 0.0099 D

D

0.1534 D



D

=

+





 

(6)


 

Assuming that D

f

 = D


eff

, a conservative value of A = 2.2233 would be obtained.  Lower 

A values, and consequently HMA thicknesses, may be obtained if using the actual D

f

 and D



eff 

values.  For example, a 150 mm (6 in) HMA layer is required to substitute an HMA thickness of 

87.5 mm (3.5 in) of PCCP in the example considered in this report.  Once the overlay thickness 

is computed, it is typically rounded to the nearest 0.5 in.   

 


tải về 1.81 Mb.

Chia sẻ với bạn bè của bạn:
1   ...   7   8   9   10   11   12   13   14   ...   42




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương