360R-06 Design of Slabs-on-Ground


—Distributed reinforcement to reduce curling



tải về 2.35 Mb.
Chế độ xem pdf
trang85/107
Chuyển đổi dữ liệu11.08.2022
Kích2.35 Mb.
#52863
1   ...   81   82   83   84   85   86   87   88   ...   107
Design of Slabs-on-Ground

13.9—Distributed reinforcement to reduce curling 
and number of joints
Because it is the upper part of a floor slab that has the
greatest shrinkage, the reinforcement should be in the upper
half of that slab so that the steel will restrain shrinkage of the
concrete. One and one-half to 2 in. (38 to 51 mm) of concrete
cover is preferred. Reinforcement in the lower part of the
slab may actually increase upward slab curling for slabs
under roof and not subject to surface heating by the sun. To
avoid being pushed down by the feet of construction
workers, reinforcing wire or bars should preferably be
spaced a minimum of 14 in. (360 mm) in each direction. The
deformed wire or bar should have a minimum diameter of 3/
8 in. (9 mm) to provide sufficient stiffness to prevent
bending during concrete placement.
For unreinforced slabs, joint spacings of 24 to 36 times the
slab thickness up to 18 ft (5.5 m) have generally produced
acceptable results. A closer spacing, however, is more likely
to accommodate the higher shrinkage concrete mixtures
often encountered (refer to 
Fig. 5.6
 for recommendations). If
greater joint spacings than these are desirable to reduce
maintenance, the designer should consider a continuously
reinforced, a post-tensioned, or a shrinkage-compensating
concrete slab as a means to reduce the number of joints in
slabs-on-ground. The specified steel should be stiff enough
and have a large enough spacing so that it is practical to
expect the steel to be placed (and remain) in the upper half of
the slab. Joint locations should be detailed on the slab
construction drawings.
13.10—Thickened edges to reduce curling
Curling is greatest at corners of slabs, and corner curling
is reduced as slab thickness increases (Child and Kapernick
1958). For example, corner curling vertical deflections of
0.05 and 0.11 in. (1.3 and 2.8 mm) were measured for 8 and
6 in. (200 and 150 mm) thick slabs, respectively, after 15
days of surface drying.
Thickening free edges subjected to loading is a design
strategy that accounts for the difference in mid-panel and
edge load response in slabs of constant thickness. Edge
curling may be reduced by thickening slab edges. The
thickened edge contributes added weight and also reduces
the surface area exposed to drying relative to the volume of
concrete, both of which help to reduce upward curling. Free
slab edges and edges at construction joints where positive
load-transfer devices, such as dowels, are not provided
should be thickened 50% with a gradual 1-in-10 slope.



tải về 2.35 Mb.

Chia sẻ với bạn bè của bạn:
1   ...   81   82   83   84   85   86   87   88   ...   107




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương