An Introduction to mems (Micro-electromechanical Systems)



tải về 1.48 Mb.
Chế độ xem pdf
trang21/80
Chuyển đổi dữ liệu01.03.2022
Kích1.48 Mb.
#51121
1   ...   17   18   19   20   21   22   23   24   ...   80
an-introduction-to-mems

Product Types 

1996 

Units 

(millions) 



(millions)  

2002 Units 

(millions)  



(millions)  

HDD heads 

530  

4500  


1500  

12000  


Inkjet print heads 

100  


4400  

500  


10000  

Heart pacemakers 

0.5  

1000  


0.8  

3700  


In vitro diagnostics 

700  


450  

4000  


2800  

Hearing aids 

4  

1150  


7  

2000  


Pressure sensors 

115  


600  

309  


1300  

Chemical sensors 

100  

300  


400  

800  


Infrared imagers 

0.01  


220  

0.4  


800  

Accelerometers  

24  

240  


90 

430  


Gyroscopes 

6  


150  

30  


360  

Magnetoresistive sensors 

15  

20  


60  

60  


Microspectrometers 

0.006  


3  

0.15  


40  

TOTAL 

1595  

$13,033  

6807  

$34,290  

 

In the area of emerging MEMS products, Table 4 provides the NEXUS worldwide M



3

 market 


size in 1996 and forecasts for 2002.  Drug delivery systems (microfluidic microdosing 

systems), lab-on-a-chip devices and MEMS-based optical switches are predicted to reach 

billion dollar market segments by 2002.  

Table 3.  Worldwide M

3

 market size in 1996 and 2002 for existing MEMS product types 



in $US millions [23]. 


An Introduction to MEMS 

 

 



Prime Faraday Technology Watch – January 2002 

15

 

 

 

Product Types 



1996 

Units 

(millions) 



(millions)  

2002 Units 

(millions)  

$ (millions)  

Drug delivery systems 

10 


100 

1000 


Optical switches 

50 



40 

1000 


Lab on ship 



100 

1000 


Magneto optical heads 

0.01 


100 


500 

Projection valves 

0.1 

10 


300 


Coil on chip 

20 


10 

600 


100 

Micro relays 

 

0.1 


50 

100 


Micromotors 0.1 



80 

Inclinometers 1 

10 

20 


70 

Injection nozzles 

10 

10 


30 

30 


Anti-collision sensors 

0.01 


0.5 

20 



Electronic noses 

0.001 


0.1 

0.05 




TOTAL__33__$107__1045__$4,205'>TOTAL 

33 

$107 

1045 

$4,205 

 

 



A more recent market study by NEXUS/Roger Grace Associates, shown in Table 5, estimated 

the M


3

 market to be $14.2 billion in 2000, increasing to $30.4 billion by 2004.  This 

corresponds to a compounded annual growth rate (CAGR) of 21%.  Telecommunications is 

forecast to be the major growth area, comprised of both optical MEMS and RF MEMS-based 

devices. 

 

 



Application Sector 

2000 

2004 

CAGR(%) 

IT/Peripheral 

$ 8,700 

$13,400 


11.5 

Medical/Biochemical 

2,400 

7,400 


32.5 

Industrial/Automation 

1,190 

1,850 


11.6 

Telecommunications 

130 

3,650 


128.1 

Automotive 

1,260 

2,350 


16.9 

Environmental Monitoring 

520 

1,750 


35.4 

TOTAL 

$14,200 

$30,400 

21.0% 

 

 



2.6  Miniaturization Issues 

 

As previously stated, MEMS is not about miniaturization; it is a manufacturing technology 



used to create tiny integrated microdevices and systems using IC batch fabrication techniques.  

Similarly, miniaturization is not just about shrinking down existing devices (although there 

have been some classic examples, namely the DENSO Micro-Car as shown in Figure 14); it’s 

about completely rethinking the structure of a microsystem. 

 

Table 4.  Worldwide M



3

 market size in 1996 and 2002 for emerging MEMS product types 

in $US millions [23]. 

Table 5.  Worldwide shipment of M

3

 products by application sector for 



2000-2004 in $US millions [23,26]. 


An Introduction to MEMS 

 

 



Prime Faraday Technology Watch – January 2002 

16

 

 

 

 



In order to manufacture a successful MEMS device basic physics and operating principles 

including scaling laws need to be fully understood and appreciated at both a macro and 

microlevel.  Sometimes no advantages in terms of performance, size/weight, reliability and 

cost can be gained with a MEMS device.  Increased surface area (S) to volume (V) ratios at 

microscales have both considerable advantages and disadvantages (Figure 15). 

 

 



Figure 15.  Effect of miniaturization on surface area and volume. 

 

Some of these microlevel issues include: 



 

  Friction is greater than inertia.  Capillary, electrostatic and atomic forces as well as 



stiction at a micro-level can be significant. 

 



  Heat dissipation is greater than heat storage and consequently thermal transport 

properties could be a problem or, conversely, a great benefit. 

 



  Fluidic or mass transport properties are extremely important.  Tiny flow spaces are 



prone to blockages but can conversely regulate fluid movement. 

 



  Material properties (Young’s modulus, Poisson’s ratio, grain structure) and 

mechanical theory (residual stress, wear and fatigue etc.) may be size dependent. 

 



  Integration with on-chip circuitry is complex and device/domain specific.  Lab-on-a-



chip systems components may not scale down comparably. 

 



  Miniature device packaging and testing is not straightforward.  Certain MEMS sensors 

require environmental access as well as protection from other external influences.  

Testing is not rapid and is expensive in comparison with conventional IC devices. 

 



  Cost – for the success of a MEMS device, it needs to leverage its IC batch fabrication 

resources and be mass-produced.  Hence mass-market drivers must be found to 

generate the high volume production.  

Figure 14.  The DENSO Micro-Car is a miniature version of Toyota’s first passenger car.  Fabricated 

using MEMS, at 1/1000

th

 the size of the original, it consists of a 0.67 mm magnetic-type working 



motor and when supplied with 3 V 20 mA of alternating current through a 18 µm copper wire, the 

engine runs at 600 rpm equivalent to 5-6 mm/s [27]. 





tải về 1.48 Mb.

Chia sẻ với bạn bè của bạn:
1   ...   17   18   19   20   21   22   23   24   ...   80




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương