Vibration Assessment of a New Danube Bridge at Komárom

Fig. 18 Measured vertical acceleration of the structure Fig. 19

tải về 4.5 Mb.
Chế độ xem pdf
Chuyển đổi dữ liệu01.08.2022
Kích4.5 Mb.
1   2   3   4   5   6   7   8   9   10
19508-Article Text PDF-123428-2-10-20220628

Fig. 18 Measured vertical acceleration of the structure
Fig. 19 Measured vertical acceleration of the TMD
Fig. 20 Simulated acceleration of the structure (solid line) and the TMD
[1] Zhao, L., Ge, Y. "Emergency Measures for Vortex-induced Vibration 
of Humen Bridge", presented at: Advances in Civil, Environmental, 
& Materials Research, Seoul, South Korea, Aug. 25–28, 2020.
[2] Astiz, M. A. "Wind-induced vibrations of the Alconétar Bridge, Spain", 
Structural Engineering International, 20(2), pp. 195–199, 2010.
[3] Fujino, Y., Yoshida, Y. "Wind-Induced Vibration and Control 
of Trans-Tokyo Bay Crossing Bridge", Journal of Structural 
Engineering, 128(8), pp. 1012–1025, 2002.
[4] CEN "EN 1991-1-4:2005, Eurocode 1: Actions on structures - Part 
1-4: General actions - Wind actions", European Committee for 
Standardization, Brussels, Belgium, 2005.
[5] Hu, C., Zhao, L., Ge, Y. "Mechanism of suppression of vortex- 
induced vibrations of a streamlined closed-box girder using addi-
tional small-scale components", Journal of Wind Engineering and 
Industrial Aerodynamics, 189, pp. 314–331, 2019.

Szabó et al.
Period. Polytech. Civ. Eng.
[6] Yang, Y., Kim, S., Hwang, Y., Kim, H.-K. "Experimental study on 
suppression of vortex-induced vibration of bridge deck using ver-
tical stabilizer plates", Journal of Wind Engineering and Industrial 
Aerodynamics, 210, 104512, 2021.
[7] Sun, Y., Li, M., Liao, H. "Investigation on vortex-induced vibra-
tion of a suspension bridge using section and full aeroelastic wind 
tunnel tests", Wind and Structures, 17(6), pp. 565–587, 2013.
[8] Shimada, K., Ishihara, T. "Predictability of unsteady two-dimen-
sional k-ε model on the aerodynamic instabilities of some rectangu-
lar prisms", Journal of Fluids and Structures, 28, pp. 20–39, 2012.
[9] Wu, T., Kareem, A. "An overview of vortex-induced vibration (VIV) 
of bridge decks", Frontiers of Structural and Civil Engineering, 6, 
pp. 335–347, 2012.
[10] Huang, Z., Li, Y., Hua, X., Chen, Z., Wen, Q. "Automatic Iden-
tification of Bridge Vortex-Induced Vibration Using Random 
Decrement Method", Applied Sciences, 9(10), 2049, 2019.
[11] Li, Z., Zhou, Q., Liao, H., Ma, C. "Numerical studies of the sup-
pression of vortex-induced vibrations of twin box girders by cen-
tral grids", Wind and Structure, 26(5), pp. 305–315, 2018.
[12] Mannini, C. "Applicability of URANS and DES Simulations of 
Flow Past Rectangular Cylinders and Bridge Sections", Computation, 
3(3), pp. 479–508, 2015.
[13] Lee, L. W., Wang, Y. L. "Aerodynamics of a circular cylinder 
of finite length on cross-flow", In: ASME Applied Mechanics, 
Bioengineering and Fluids Engineering Conference, Cincinnati
OH, USA, 1987. pp. 61–65.

Document Outline

  • 1 Introduction
    • 1.1 Motivation
  • 2 The new Komárom Danube Bridge project 
  • 3 Structural dynamics of the new Komárom Bridge
  • 4 Aerodynamics of the bridge deck
  • 5 Measured wind characteristics 
  • 6 Validation to present monitoring data 
  • 7 Conclusions 

tải về 4.5 Mb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5   6   7   8   9   10

Cơ sở dữ liệu được bảo vệ bởi bản quyền © 2022
được sử dụng cho việc quản lý

    Quê hương