Vibration Assessment of a New Danube Bridge at Komárom



tải về 4.5 Mb.
Chế độ xem pdf
trang1/10
Chuyển đổi dữ liệu01.08.2022
Kích4.5 Mb.
#52778
  1   2   3   4   5   6   7   8   9   10
19508-Article Text PDF-123428-2-10-20220628



Cite this article as: Szabó, G., Völgyi, I., Kenéz, Á. "Vibration Assessment of a New Danube Bridge at Komárom", Periodica Polytechnica Civil Engineering
2022. 
https://doi.org/10.3311/PPci.19508
https://doi.org/10.3311/PPci.19508
Creative Commons Attribution b 
|
1
Periodica Polytechnica Civil Engineering
Vibration Assessment of a New Danube Bridge at Komárom
Gergely Szabó
1*
, István Völgyi
2
, Ágnes Kenéz
2
1
Pont-TERV Ltd. Engineering Consultants, Mohai út 38., H-1119 Budapest, Hungary
2
Department of Structural Engineering, Faculty of Civil Engineering, Budapest University of Technology and Economics, 
Műegyetem rkp. 3., H-1111 Budapest, Hungary
*
Corresponding author, e-mail: 
mr.gergely.szabo@gmail.com
Received: 10 November 2021, Accepted: 30 May 2022, Published online: 28 June 2022
Abstract
In this paper the vortex induced vibration of a cable-stayed bridge with a main span of 252 m was studied at construction stages. 
Structural FEM and aerodynamic CFD models were made in order to calculate the vibration amplitude of this slender structure. The 
damping of the pure steel structure and the effect of the tuned mass dampers were measured through on-site vibration tests. Based 
on the validated structural dynamics model and the simulated aerodynamic parameters, the vortex induced vibration amplitudes 
were evaluated and compared with the monitoring data gained from accelerometers and wind sensors attached to the stiffening 
girder during the most critical construction period.
Keywords
cable-stayed bridge, free cantilever construction, vortex induced vibration, monitoring system
1 Introduction
1.1 Motivation
Slender bridge structures are known to be sensitive to wind 
effects. A number of wind related phenomena are known, 
among which vortex induced vibration (VIV) can be con-
sidered as the most common one that has been observed at a 
number of bridges in the past decades. Contrary to self-ex-
cited vibration such as flutter, VIV may not cause the fail-
ure of the bridge, but can lead to unacceptable vibration 
amplitudes, nevertheless. VIV mostly occur at completed 
bridges, but can also appear during construction stages, at 
which the structure has not reached its final stiffness yet, 
consequently, is exceptionally sensitive to wind loading.
Recently, one of the well-known examples was the 
intense oscillations of the Volgogradsky Bridge on the 
20
th
May, 2010. The multiple-span continuous girder with 
maximum spans of 155 m can be considered as extremely 
flexible due to the low flexural rigidity with natural bending 
frequencies as low as 0.42 Hz. The vibration modes were 
almost purely bending. The observed vibration amplitude 
was estimated as 40 cm. On the 5
th
May, 2020, the Humen 
Pearl River Bridge showed remarkable vibration ampli-
tudes. The VIV of the suspension bridge was reportedly 
caused by the temporary traffic isolation barriers on both 
sides of the bridge deck installed for maintenance purposes. 
These elements significantly changed the aerodynamic 
performance of the otherwise streamlined, closed steel box 
girder. Although the VIV has not endangered the safety of 
the structure, the bridge had to be closed. The vibration 
frequency was 0.368 Hz, corresponding to the third sym-
metrical vertical bending mode. The estimated amplitude 
was 31 cm. Although the barriers were removed immedi-
ately after the vibrations showed up, the problem has not 
entirely disappeared. Frequencies of VIV that occurred 
later were mainly 0.225 Hz and 0.275 Hz, respectively, 
corresponding to the second symmetrical and the second 
asymmetrical vertical bending modes. The correspond-
ing amplitudes were 15 cm and 23 cm, respectively [1]. 
In December of 2020, the Verrazano-Narrows Bridge in 
New York City was also closed due to high wind veloci-
ties and the consequent disturbing vibrations. According 
to the Metropolitan Transportation Authority, however, 
the vibration amplitude of the bridge remained on the safe 
side. VIV mostly occur at completed bridges, but can also 
appear during construction stages, see e.g., the Alconétar 
Bridge [2] or the Trans-Tokyo Bay Bridge [3].

tải về 4.5 Mb.

Chia sẻ với bạn bè của bạn:
  1   2   3   4   5   6   7   8   9   10




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương