University of South Wales Master of Sciences Thesis


Standalone hybrid generation system for the remote area of Thar, Pakistan



tải về 6.62 Mb.
Chế độ xem pdf
trang33/86
Chuyển đổi dữ liệu10.08.2022
Kích6.62 Mb.
#52849
1   ...   29   30   31   32   33   34   35   36   ...   86
Standalone Hybrid Power Generation Syste

 
Standalone hybrid generation system for the remote area of Thar, Pakistan
 
 
 
Fig. 2.25 Three-phase PV topology with line-frequency transformer 
Modern inverters tend to use a high-frequency transformer for galvanic isolation. This technology 
results in entirely new designs, such as the printed circuit board (PCB) integrated magnetic 
components (Kjaer et al. 2005). One such design is shown in Figure 9, where the transformers are 
embedded in high-frequency DC-DC converters. Such a topology is also very useful for multi-string 
configurations, where each of the strings can be connected to a common DC bus and then converted 
to grid compatible AC by using a single DC-AC inverter. 
Fig. 2.26. Multi-string PV topology with high-frequency transformer-based isolation 
 
The most generalized form of power electronics topology for the PV application is the DC-DC 
converter with embedded high-frequency transformer, along with the DC-AC inverter as shown in 
Figure 9. In general, the DC-DC converter controller does the MPPT and voltage boost. The power 
flow control to the utility and the sinusoidal unity power factor current-injection to the utility are 
produced by the DC-AC inverter controller. A simplified block diagram of the PV system with the 
power electronics and control is given in Figure 10. 


 
Standalone hybrid generation system for the remote area of Thar, Pakistan
 
 
 
Fig. 2.27 Generalized power electronics and control of a PV system 
 
The power electronics circuits shown in Figure 10 consist of a DC-DC converter and a three-phase 
inverter. The DC-DC converter is based on current-source full-bridge inverter with an embedded 
high-frequency transformer and rectifier. The current-source input stage is beneficial since it reduces 
the requirement for the filter capacitor in parallel with the PV strings. Furthermore, the diodes 
included in the rectifiers are current-commutated, involving low-reverse recovery of the diodes and 
low voltage stress (Kjaer et al. 2005). The voltage from the PV string is first converted into a high-
frequency AC; The transformer secondary voltage is then rectified using a full-bridge diode rectifier. 
The rectified DC is then converted into micro-grid compatible AC and connected to the utility by a 
three-phase voltage-source inverter.
Tracking the maximum power point (MPP) of a PV array is usually an essential part of a PV system. 
Over the years, many MPPT methods have been developed and implemented. These methods vary in 
complexity, required sensors, convergence speed, cost, range of effectiveness, implementation 
hardware, popularity, etc. The names of some of these methods are hill climbing, perturb and observe, 
incremental conductance, fractional open-circuit voltage, fractional short-circuit current, fuzzy logic 
and neural network control, ripple correlation control, current sweep, DC-link capacitor droop control, 
load-current or load-voltage maximization, and dP/dV or dP/dI feedback control. The detailed 
overview of these MPPT methods can be found in T. Esram and P. L. Chapman’s “Comparison of 
Photovoltaic Array Maximum Power Point Tracking Techniques.”
In Figure 10, a simple but effective method for the MPPT is shown. By measuring the string voltage 
and current, the PV array output power is calculated and compared to the actual PV array output 
power. Depending on the result of the comparison, the duty cycle is changed to control the input 
current for the current-source inverter, accordingly. This process is repeated until the maximum 
power point has been reached. Other types of MPPT controllers can also be developed within the 
same controller framework. Furthermore, additional controllers can be designed to control the 
amplitude of the high-frequency AC voltage at the primary of the transformer.
There are two basic control modes for the grid-connected inverters. One is constant current control; 
the other is constant power control. It is still debatable if an inverter should be allowed to regulate 
voltage during grid-connected operation. The current IEEE 1547 standard does not allow distributed 
generation to actively regulate voltage, while some people in the industry suggest that voltage 
regulation may have some positive impact on the grid (Ye et al. 2006). Control of the utility-
connected inverter is shown with constant power control (see Figure 10). Many functions to manage 



tải về 6.62 Mb.

Chia sẻ với bạn bè của bạn:
1   ...   29   30   31   32   33   34   35   36   ...   86




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương