Rf and if digitization in Radio Receivers: Theory, Concepts, and Examples


  Effects of Quantization Noise, Distortion, and Receiver Noise



tải về 0.99 Mb.
Chế độ xem pdf
trang11/37
Chuyển đổi dữ liệu27.02.2022
Kích0.99 Mb.
#50663
1   ...   7   8   9   10   11   12   13   14   ...   37
baseband signal
Chương-3, tham-số-hiệu-năng, OFDM vs OFDMA
2.2  Effects of Quantization Noise, Distortion, and Receiver Noise  

This section addresses the relationships between quantization noise, harmonic distortion, and 

receiver noise. The ADCs best suited to RF and IF processing that have widespread availability 

use uniform quantization. In uniform quantization, the voltage difference between each 

quantization level is the same. Other methods of quantization include logarithmic (A-law and μ-

law), adaptive, and differential quantization. These methods currently are used in source coding. 

A discussion of these quantization techniques is given in Section 4.  

In uniform quantization, the analog signal cannot be represented exactly with only a finite 

number of discrete amplitude levels. Therefore, some error is introduced into the quantized 

signal. The error signal is the difference between the analog signal and the quantized signal. 

Statistically, the error signal is assumed to be uniformly distributed within a quantization level. 

Using this assumption, the mean squared quantization noise power P



qn

 is  


 

P

qn

 = 


q

2

12R



 

where q is the quantization step size and R is the input resistance of the ADC [5]. In an ideal 

ADC, this representation of the quantization noise power is accurate to within a dB for input 

signals that are not correlated with the sampling clock.  

If the analog input into an ADC is periodic, the error signal is also periodic. This periodic error 

signal includes harmonics of the analog input signal and results in harmonic distortion. 

Furthermore, harmonics that fall above f

s

/2 appear in the frequency band from 0 to f



s

/2 due to 

aliasing.  

This harmonic distortion that occurs through the quantization process is quite undesirable in 

radio receiver applications; it becomes difficult if not impossible to distinguish the harmonics 

caused by quantization and the spurious and harmonic components of the actual input signal. 

Dithering is a technique that is commonly used to reduce this harmonic distortion.  



 

Dithering is a method of randomizing the quantization noise by adding an additional noise signal 



to the input of the ADC [6]. Several types of techniques are used for dithering. Perhaps the most 

basic technique adds wideband thermal noise to the input of the ADC. This can be accomplished 

by summing the output of a noise diode with the input signal before digitization by the ADC. 

This also can be achieved by simply placing an amplifier before the ADC and providing enough 

gain to boost the receiver noise to a level that minimizes the spurious responses of the ADC. 

These techniques reduce the levels of the spurious responses by randomizing the quantization 

noise. In other words, for periodic input signals that would normally produce harmonics in the 

ADC output, the addition of a dithering signal spreads the energy in these harmonic components 

into random noise, thus reducing the amplitude of the spurious components.  

A disadvantage of adding wideband noise to the input of the ADC is that the SNR is degraded. 

The amount of degradation depends upon the amount of noise power added to the input of the 

ADC. Adding a noise power equal to the quantization noise power degrades the SNR by 

3 dB [5].  

Two techniques commonly are used to prevent degradation in the SNR while dithering. The first 

technique filters noise from a wideband noise source before the noise is added to the ADC input. 

Filtering limits the noise power to a frequency range that is outside of the receiver’s bandwidth. 

Hence, over the receiver’s bandwidth, the SNR is not degraded.  

The other technique used to prevent degradation of the SNR is called subtractive dithering 

(Figure 3). A pseudorandom noise (PN) code generator is used to generate the dithering signal. 

The digital output of the PN code generator is converted into an analog noise signal using a 

digital-to-analog converter. This noise signal is added to the input signal of the ADC. The digital 

output of the PN code generator is then subtracted from the output of the ADC, again preserving 

the SNR of the ADC [7]. An example of dithering, achieved by boosting the receiver system 

noise with an amplifier, is given in the following paragraphs.  

 

Figure 3. Block diagram of subtractive dithering. 



Commercially available ADCs typically have a full scale range (FSR) of 1-20 V. The FSR of the 

ADC is the difference between the maximum and the minimum analog input voltages to the 

ADC. Dividing the FSR by the number of quantization levels 2

B

, where B is the number of bits 

of the ADC, provides the quantization step size q. For an 8-bit ADC with an FSR of 2.5 V, the 

Analog-to-

Digital 

Converter 

Digital-to-

Analog 


Converter 

PN Code 


Generator 

Analog 


Input 

Digital 


Output 

− 




 

10 


quantization step size is 9.77 mV. To compute the quantization noise power, the effective input 

resistance of the ADC must be known.  

Components in radio receivers typically have a 50-ohm input and output impedance. The input 

impedance of ADCs is usually higher than this and is not well specified. Therefore, when 

interfacing an RF component with an ADC, as is necessary for digitization at the RF or IF, this 

impedance mismatch must be considered. A simple method of impedance matching is to place a 

50-ohm resistive load at the input of the ADC. This forces the effective input resistance of the 

ADC to be close to 50 ohms. The quantization noise power then can be computed. Assuming a 

50-ohm effective input resistance R to the ADC in this example, the quantization noise power 

equals -38 dBm. For a noise-limited receiver, the receiver noise power P



rn

 can be computed as 

the thermal noise power in the given receiver bandwidth (BW) plus the receiver noise figure 

(NF). This is given as  

 

P

rn

 = -174 dBm + 10 log

10

BW (Hz) + NF (dB) . 



For a receiver with a 10-MHz BW and a 6-dB NF, the receiver noise power is -98 dBm. 

Therefore, a gain of 60 dB is required to boost the receiver noise to the quantization noise power 

level. For an ADC of higher resolution, less gain would be needed since the quantization noise 

power would be smaller. Also, wider receiver bandwidths and higher receiver noise figures 

would require less gain since the receiver noise power would be larger. Nevertheless, for most 

practical receiver and ADC combinations, an amplifier with automatic gain control is necessary 

before the ADC. The automatic gain control is designed so that the receiver noise roughly equals 

the quantization noise power level for low-level signals and the input signal power does not 

exceed the ADCs FSR for high-level signals.  

The 2- to 30-MHz single-sideband (SSB) receiver presented in [8] shows an example of a 

receiver using this dithering technique. Digitization occurs at the 456-kHz IF after dual 

downconversion. The Collins Radio Division of Rockwell International uses this type of scheme 

in many of their receivers.  


tải về 0.99 Mb.

Chia sẻ với bạn bè của bạn:
1   ...   7   8   9   10   11   12   13   14   ...   37




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương