LỜi cảM Ơn trước hết, tôi xin bày tỏ lòng biết ơn chân thành và sâu sắc tới pgs. Ts. Nông Văn Hải – Phó Viện trưởng, Giám đốc Phòng thí nghiệm trọng điểm Công nghệ gen, Trưởng phòng Công nghệ adn ứng dụng



tải về 369.54 Kb.
trang5/7
Chuyển đổi dữ liệu30.08.2016
Kích369.54 Kb.
#28471
1   2   3   4   5   6   7

Chương 3 – KẾT QUẢ VÀ BÀN LUẬN


Gen mã hóa xylanase muốn được chuyển vào nấm mốc A. niger thông qua A. tumefaciens thì phải được gắn vào giữa hai vùng biên phải và trái (LB và RB) của T – DNA trên Ti plasmid. Để giải phóng T – DNA có đoạn DNA ngoại lai, A. tumefaciens được nuôi chung với bào tử nấm trong môi trường có bổ sung chất cảm ứng AS, cảm ứng gen vir để chuyển gen mong muốn sang tế bào chủ. Nấm mốc chuyển gen được chọn lọc dựa trên đặc tính của đoạn DNA ngoại lai hoặc biểu hiện ra sản phẩm protein. Thông thường, cơ thể chuyển gen được chọn lọc trên môi trường có bổ sung kháng sinh thích hợp [8].

Tiến hành khảo sát một số vector pCAMBIA1300, chúng tôi lựa chọn Ti plasmid vector pCB1300 vì vùng T – DNA của vector này có vị trí nhận biết của nhiều enzyme giới hạn phù hợp với chiến lược thiết kế vector đã đặt ra. Để tạo chủng Agrobacterium làm nguyên liệu chuyển gen vào nấm, việc đầu tiên là thiết kế Ti plasmid vector biểu hiện, vector này được kí hiệu pCB_xylB_hph gen mã hóa xylanase (xylB) và gen kháng hygromycin B (hph).

Vector tái tổ hợp Ti plasmid được kiểm tra bằng cắt enzyme giới hạn hoặc PCR hoặc giải trình tự gen trước khi chuyển vào Agrobacterium. Chủng vi khuẩn A. tumefaciens mang vector biểu hiện pCB_xylB_hph được nuôi nhiễm với bào tử nấm A. niger. Nấm chuyển gen sẽ được tiếp tục chọn lọc trên môi trường có bổ sung chất kháng sinh thích hợp. Toàn bộ quy trình thiết kế vector biểu hiện gen mã hóa xylanase trong nấm mốc được thể hiện chi tiết qua sơ đồ sau:

3.1. Thiết kế vector trung gian (pKS_xylB_hph) mang hai cấu trúc biểu hiện xylB hph

3.1.1. Lắp ghép xylB vào vector trung gian


Để thiết kế vector trung gian pKS_xylB_hph, xylB hph được lắp ghép vào vector trung gian pKS–. Tuy nhiên, cấu trúc biểu hiện xylBhph trong nấm mốc lại nằm trên vector pAN7.1 – GluA. Do vậy, hai cấu trúc trên được đưa lần lượt vào vector trung gian. Trước hết là tiến hành thiết kế vector trung gian mang cấu trúc biểu hiện xylB dựa trên vector pAN7.1 – GluA, tạo thành vector tái tổ hợp được kí hiệu là pAN_xylB.

3.1.1.1. Thiết kế vector tái tổ hợp pAN_xylB mang xylB


Muốn gen hoạt động và biểu hiện ra sản phẩm protein, gen phải nằm trong một kết cấu hoàn chỉnh gồm đoạn khởi đầu ở phía trước và đoạn kết thúc ở phía sau gen, đoạn khởi đầu và kết thúc này sẽ điều khiển gen hoạt động trong tế bào chủ thích hợp [6, 22, 39]. Bởi vậy, để xylB biểu hiện được, trình tự DNA mang mã di truyền của xylB phải được lắp ghép đúng chiều vào giữa đoạn khởi đầu và đoạn kết thúc trên vector pAN7.1 – GluA [22].

Trước hết, trình tự của xylB được nối ghép vào vector tách dòng pJET1.2 để nhân lên lượng lớn, sau đó vector tái tổ hợp được cắt bằng enzyme Bgl II để thu lại đoạn gene mang trình tự xylB làm nguyên liệu lắp ghép vào vector pAN7.1 – GluA. Để có thể nối ghép xylB vào vector pAN7.1 – GluA, vector pAN7.1 – GluA phải được cắt mở vòng bằng enzyme giới hạn. Giữa đoạn khởi đầu và đoạn kết thúc điều khiển khiển hoạt động của xylB có vị trí nhận biết của enzyme giới hạn Bam HI, do đó enzyme Bam HI được sử dụng để cắt vector pAN7.1 – GluA.








Hình 3. 2: Điện di đồ kiểm tra sản phẩm tinh sạch của vector pAN7.1 – GluA và gen mã hóa xylanase

M: Marker 1 kb

1: Sản phẩm cắt của vector pAN7.1 – GluA bằng enzyme Bam HI

2: Sản phẩm cắt của gen mã hóa xylanase bằng enzyme Bgl II

Vector pAN7.1 – GluA được mở vòng bằng Bam HI nên sản phẩm cắt thu được trên điện di đồ (Hình 3. 2) là một băng duy nhất có kích thước khoảng 8,3 kb. Sản phẩm cắt enzyme của gen mã hóa xylanase có kích thước khoảng 0,7 kb. Hai đoạn DNA này có kích thước phù hợp với lý thuyết. Do đó, chúng sẽ được tinh sạch và nối ghép với nhau nhờ T4 DNA ligase. Do trình tự nhận biết điểm cắt của Bgl II tương đồng với trình tự cắt của Bam HI nên chúng có thể nối ghép dễ dàng. Sản phẩm nối ghép được biến nạp vào E. coli để thu lượng lớn DNA plasmid tái tổ hợp.

Trước tiên, các tế bào trong dịch nuôi cấy được thu nhận bằng cách ly tâm thu tủa. Tiếp đó chúng được xử lý bằng dung dịch I (có tác dụng rửa sạch tế bào), sau đó phá màng tế bào bằng dung dịch II. Các cấu trúc của tế bào cũng như các liên kết hydro trong phân tử bị phá vỡ. SDS cùng với EDTA trong dung dịch II còn có vai trò ức chế các nuclease do EDTA liên kết các ion Mg2+ (yếu tố cần thiết cho hoạt động của các nuclease), vì vậy ngăn không cho các nuclease phân giải DNA trong quá trình tách chiết. Tế bào vi khuẩn E. coli có chứa hai dạng DNA: DNA nhiễm sắc thể của E. coli và DNA plasmid nên việc tách riêng, làm sạch DNA plasmid là rất quan trọng. DNA plasmid được tách riêng dựa trên sự khống chế thời gian xử lý các dung dịch I, II, III. DNA nhiễm sắc thể có kích thước phân tử lớn lại liên kết chặt chẽ với protein trong phức chất nucleoprotein nên khoảng thời gian ngắn không kịp thoát ra ngoài. Trong khi đó, các phân tử DNA plasmid mạch vòng đã được giải phóng ra môi trường. Khi môi trường được xử lý tiếp với dung dịch III thì pH môi trường trở về khoảng acid yếu gắn với điểm đẳng điện của DNA. Vì vậy, DNA plasmid dễ bị kết tủa bằng cồn và được kiểm tra kích thước bằng phương pháp điện di trên gel agarose 0,8%.


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16



Hình 3. 3: Điện di đồ kiểm tra plasmid tái tổ hợp mang xylB

1 – 15: Plasmid tái tổ hợp của các dòng khuẩn lạc (kí hiệu pAN_xylB từ (1 – 15))

16: Đối chứng – vector pAN7.1 – GluA

Theo lý thuyết, các plasmid mang đoạn gen ngoại lai sẽ có kích thước lớn hơn plasmid không được chèn thêm đoạn gen ngoại lai (hay được gọi là plasmid gốc). Do vậy, độ cao thấp của các băng trên hình ảnh điện di sản phẩm tách plasmid so với băng đối chứng là cơ sở ban đầu để dự đoán dòng nào đã được chèn thêm đoạn DNA ngoại lai. Trên điện di đồ (Hình 3.3), hầu hết DNA plasmid tái tổ hợp đều cao hơn so với DNA plasmid đối chứng. 4 plasmid có thứ tự từ giếng 1 – 4 tương ứng với các dòng khuẩn lạc có kí hiệu pAN_xylB1; pAN_xylB2, pAN_xylB3 và pAN_xylB4 được tinh sạch và dùng làm khuôn cho PCR sử dụng cặp mồi đặc hiệu cho xylB: XylB – F và XylB – R kiểm tra sự có mặt của xylB trong vector pAN – GluA.





Hình 3. 4: Điện di đồ kiểm tra sự có mặt của xylB trong vector tái tổ hợp pAN_xyB bằng PCR

M:Marker 1 kb

1 – 5: Sản phẩm PCR của dòng khuẩn lạc pAN_xylB6– 10

Trên điện di đồ (Hình 3. 4), các băng ở giếng 1 – 5 tương ứng với dòng khuẩn lạc pAN_xylB(6 – 10), đều có kích thước khoảng 0,7 kb, bằng với kích thước lý thuyết của gen xylB. Do đó, chúng tôi khẳng định đã nối ghép thành công xylB vào vector pAN7.1 – GluA.

PCR được sử dụng để kiểm tra chiều gắn của đoạn xylB trên vector pAN - GluA. Tuy nhiên, PCR bằng cặp mồi đặc hiệu của xylB không thể phân biệt được chiều gắn của xylB vì chúng chỉ nhân lên đúng trình tự của xylB. Kỹ thuật cắt enzyme giới hạn cũng không thể áp dụng được bởi không lựa chọn được enzyme phù hợp. Chính vì thế chúng tôi đã thiết kế mồi SeqXylB – F kết hợp với mồi XylB – R để kiểm tra chiều gắn của xylB bằng kỹ thuật PCR. Mồi SeqXylB – F sẽ bắt cặp với trình tự trên đoạn khởi đầu GpdA của xylB, mồi XylB – R sẽ bắt cặp trên trình tự xylB. Nếu xylB lắp ghép đúng chiều vào giữa đoạn khởi đầu và đoạn kết thúc thì kích thước sản phẩm PCR sẽ khoảng 1,2 kb; ngược lại nếu lắp không đúng chiều PCR sẽ không có sản phẩm.




Hình 3. 5: Điện di đồ kiểm tra chiều gắn của xylB trong vector tái tổ hợp pAN_xylB bằng PCR sử dụng cặp mồi Seq – F và XylB – R

M: Marker 1 kb

1 – 5: Sản phẩm PCR của các dòng pAN_xylB (6 – 10)

Sản phẩm PCR của plasmid tái tổ hợp ở giếng số 1 và giếng số 3 (Hình 3. 5) tương ứng với dòng khuẩn lạc có kí hiệu pAN_xylB1 và pAN_xylB3 xuất hiện băng đặc hiệu với kích thước khoảng 1,2 kb. Kích thước này đúng bằng kích thước lý thuyết. Như vậy, chúng tôi đã chọn được dòng plasmid tái tổ hợp mang xylB lắp đúng chiều vào giữa đoạn khởi đầu và đoạn kết thúc trên vector pAN7.1 – GluA. Dòng plasmid pAN_xylB6 và pAN_xylB8 được nuôi lượng lớn và giữ chủng nhằm phục vụ cho các nghiên cứu sau.


3.1.1.2. Lắp ghép xylB trong vector pAN_xylB vào vào vector trung gian


Sản phẩm để nối ghép vào vector trung gian pKS– là cấu trúc gồm: đoạn khởi đầu + xylB + đoạn kết thúc (GpdA + xylB + TrypC) hay còn gọi là cấu trúc biểu hiện xylB, cấu trúc này có kích thước khoảng 4,2 kb. Enzyme Eco RI và Sma I được dùng để cắt hoàn toàn cấu trúc (GpdA + xylB + TrypC) trên vector tái tổ hợp pAN_xylB. Theo lý thuyết, sản phẩm cắt enzyme thu được 4 băng, trong đó có hai băng có kích thước tương đương nhau, khoảng 4, 2 kb nên rất khó phân tách. Đó là hai đoạn tương ứng với đoạn gen có cấu trúc biểu hiện xylB và một đoạn khác cũng cắt từ vector pAN_xylB. Vì vậy, plasmid tái tổ hợp cần tiếp tục được kiểm tra lại bằng kỹ thuật PCR và kỹ thuật cắt enzyme giới hạn.

Sau khi lựa chọn một số dòng cao hơn đối chứng âm (vector pAN7.1 – GluA). DNA plasmid của các dòng khuẩn lạc này được tinh sạch và kiểm tra sự có mặt của cấu trúc biểu hiện xylB trong vector tái tổ hợp pKS_xylB bằng PCR sử dụng cặp mồi SeqXylB – F và XylB – R.


Kb M 1 2 3 4


~ 1,2 kb

1,5

1



Hình 3. 6: Điện di đồ kiểm tra sự có mặt của cấu trúc biểu hiện xylB trên vector trung gian bằng PCR

M: Marker 1 kb

1 – 4: Sản phẩm PCR của các dòng khuẩn lạc pKS_xylB(1, 3, 8, 9))

Trên điện đồ (Hình 3. 6), sản phẩm PCR rất đặc hiệu với kích thước khoảng 1,2 kb, sáng và rất đặc hiệu phù hợp với tính toán lý thuyết. Như vật, chúng đã chuyển thành công gen mã hóa xylanase vào vector trung gian pKS-. Như vậy, chúng đã chuyển thành công gen mã hóa xylanase vào vector trung gian và vector này bước đầu được kí hiệu là pKS_xylB. Các plasmid tái tổ hợp được kiểm tra bằng cắt enzyme Sma I và Eco RI. Hai enzyme có điểm cắt ngoại, tức là điểm cắt ở hai đầu đoạn gen ngoại lai trên vector tái tổ hợp pKS_xylB. Theo lý thuyết, sản phẩm cắt enzyme của plasmid tái tổ hợp pKS_xylB sẽ có kích thước khoảng 3 kb và 4,2 kb.


pKS pKS pKS M Kb


6
2,5

~ 4,2 kb

~ 3 kb



Hình 3. 7: Điện di đồ kiểm tra plasmid tái tổ hợp pKS_xylB bằng enzyme Sma I và Eco RI

M: Marker 1 kb

P: plasmid tái tổ hợp pKS_xylB9

pKS: Sản phẩm cắt của khuẩn lạc pKS_xylB bằng enzyme Sma I và Eco RI

Vì cấu trúc GpdA promoter + xylB gene + TrypC terminator được cắt bằng Sma I và Eco RI để nối ghép vào vector KS- cũng đã được cắt bằng hai enzyme tương tự nên điểm cắt của hai enzyme này không bị mất đi. Do đó vector tái tổ hợp KS_­xylB có thể dễ dàng được kiểm tra sự có mặt của xylB bằng cách cắt kiểm tra bằng Sma I và Eco RI. Sản phẩm cắt enzyme của tất cả các mẫu được kiểm tra trên hình ảnh điện di (Hình 3. 7) đều gồm 2 băng có kích thước phù hợp với tính toán lý thuyế: 4,2 kb (kích thước của đoạn gen ngoại lai (GpdA promoter + xylB gene + TrypC terminator) và khoảng 3 kb (kích thước của vector KS-)). Như vậy, chúng tôi khẳng định đã chuyển thành công cấu trúc (GpdA promoter + xylB gene + TrypC terminator) vào vector trung gian.

3.1.2. Lắp ghép cấu trúc GluA promoter + hph gene + TrypC terminator vào vector trung gian


Cấu trúc (GluA promoter + xylB gene + TrypC terminator) đã được lắp ghép thành công vào vector trung gian, tạo thành vector tái tổ hợp pKS_xylB. Tuy nhiên, việc chọn lọc/ sàng lọc các thể tái tổ hợp thông thường cần sự có mặt của các gen chỉ thị như các gen kháng kháng sinh [20]. Trên cơ sở vector pAN7.1 – GluA nhận được từ Phòng Công nghệ sinh học enzyme, chúng tôi tiến hành thiết kế vector tái tổ hợp mang gen kháng kháng sinh (hph) để làm nguyên liệu lắp ghép tiếp vào vector trung gian.

3.1.2.1. Thiết kế vector tái tổ hợp pJET_hph


Hph không thể lắp ghép trực tiếp vào vector trung gian vì theo chiến lược thiết kế vector đã đề ra, cấu trúc biểu hiện gen mã hóa xylanase và gen kháng hygromycin B nằm trên vector trung gian sẽ được chuyển vào Ti plasmid bằng cách cắt mở vòng Ti plasmid và vector trung gian bằng enzyme Kpn I do không chọn được enzyme khác thích hợp. Do đó, hai đầu của đoạn gen có cấu trúc biểu hiện xylB hph trên vector trung gian phải là vị trí nhận biết của Kpn I. Trên vector trung gian đã được ghép nối với xylB chỉ có một điểm cắt của Kpn I. Muốn xuất hiện điểm cắt thứ hai của Kpn I, chúng tôi phải chuyển qua một vector pKS– khác và tạo thành vector tái tổ hợp có kí hiệu pKS_hph. Trên vector pKS– cũng có điểm cắt của Kpn I, tuy nhiên nếu chuyển trực tiếp cấu trúc biểu hiện hph từ vector tái tổ hợp pKS_hph sang vector trung gian sẽ làm mất điểm cắt của Kpn I, hoặc vẫn chỉ có một điểm cắt của Kpn I và vector trung gian được tạo thành sẽ rất khó để tinh chế và nối ghép với Ti plasmid vector vì không có enzyme nào thích hợp cho cả hai vector trên. Do vậy, cấu trúc biểu hiện hph nằm trên vector tái tổ hợp pKS_hph được tách dòng bằng vector pJET1.2.

* Lắp ghép hph vào vector pKS

Vector pAN – GluA được cắt bằng enzyme Sma I và Hind III để thu đoạn gen gồm (đoạn khởi đầu GluA + hph + đoạn kết thúc TrypC) và nối ghép với vector nhận pKS– cũng được cắt bằng hai enzyme tương tự. Sản phẩm nối ghép được biến nạp vào E. coli. Các DNA plasmid sẽ được điện di trên gel agarose 0,8 % cùng với đối chứng âm (vector pKS– không có đoạn chèn), một số plasmid đại diện ở các mẫu cao hơn đối chứng âm được dùng để kiểm tra sự có mặt của hph bằng kỹ thuật PCR bằng cặp mồi đặc hiệu của hph: hph1 và hph2.


kb M 1 2 3 4 5 6 7 8 9





Hình 3. 8: Điện di đồ kiểm tra sự có mặt của hph trong vector tái tổ hợp pKS_hph bằng kỹ thuật PCR

M: Marker 100bp

1 – 9: sản phẩm PCR của plasmid tái tổ hợp pKS_hph (kí hiệu pKS_hph (1 – 9)

Sản phẩm PCR của tất cả các dòng khuẩn lạc đều xuất hiện một băng duy nhất có kích thước khoảng 0,6 kb (Hình 3. 8). Kích thước này phù hợp với kích thước lý thuyết. Do đó, chúng tôi khẳng định đã chuyển được hph vào vector pKS–. DNA của các dòng plasmid tái tổ hợp pKS_hph (1 – 3) được dùng làm khuôn để tổng hợp cấu trúc gen bao gồm (đoạn khởi đầu GluA + hph + đoạn kết thúc TrypC) bằng kỹ thuật PCR sử dụng cặp mồi M13. Sản phẩm PCR nhận được là cấu trúc gồm (đoạn khởi đầu GluA + hph + đoạn kết thúc TrypC) và sản phẩm PCR được dùng làm đoạn chèn vào vector pJET1.2.



* Lắp ghép hph trong vector tái tổ hợp pKS_hph vào vector pJET1.2

Theo lý thuyết, sản phẩm PCR khi sử dụng cặp mồi M13 với khuôn là DNA plasmid pKS_hph có kích thước khoảng 2,5 kb.



~2,5kb kb

3

2,5


kb M 1 2 3


Hình 3. 9: Điện di đồ kiểm tra sản phẩm PCR bằng mồi M13 của các plasmid tái tổ hợp pKS_hph

1 – 3: Sản phẩm PCR của các dòng khuẩn lạc (kí hiệu pKS_hph (1–3))

M: Marker 1 kb

Kết quả PCR bằng cặp mồi M13 (Hình 3. 9) thu được một băng đặc hiệu có kích thước khoảng 0,6 kb. Sản phẩm PCR được nhân lên bằng enzyme đầu bằng, do đó chúng tôi đã gắn vào vector tách dòng đầu bằng pJET1.2 của hãng Fermentas được sử dụng rộng rãi tại các phòng thí nghiệm trên thế giới. Vector này chứa điểm khởi đầu sao chép nên có khả năng sao chép độc lập với hệ gen của tế bào chủ E.coli. Trên vector có gen kháng chất kháng sinh (bla), nên chỉ có những tế bào nào có mang vector này mới có thể sống được trong môi trường có ampicillin. Đồng thời trên vector pJET1.2 còn chứa gen gây chết eco47IR mã hoá cho enzyme phân huỷ DNA nhân khi tồn tại trong tế bào vật chủ. Vì vậy vector gắn thêm đoạn ngoại lai sẽ làm lệch khung đọc của gen khiến enzyme được tổng hợp không còn hoạt tính như trước nữa. Thêm vào đó, vùng MCS (Multiple Cloning Site) của vector có chứa điểm nhận biết của nhiều enzyme hạn chế như Kpn I, Xho I, Xba I…nhằm phục vụ cho việc cắt kiểm tra sau khi đã tách dòng. Ngoài ra, trên vector mang trình tự hai mồi pJET1.2 xuôi và ngược nằm về hai phía của điểm gắn sản phẩm PCR cho phép nhân đoạn PCR được gắn vào sau tách dòng với số lượng lớn, phục vụ cho việc xác định trình tự gen.

Sản phẩm PCR của cấu trúc biểu hiện gen hph được tiến hành gắn với vector pJET1.2, sau đó biến nạp các sản phẩm nối ghép vào tế bào khả biến E.coli chủng DH5α (là loại vi khuẩn được dùng khá phổ biến tại các phòng thí nghiệm vì chúng có khả năng tái bản cao). Các tế bào khả biến sau đó được nuôi cấy trên môi trường LB đặc có bổ sung amp (50 µg/ml) ở 37˚C qua đêm. Kết quả chúng tôi thu được rất nhiều khuẩn lạc và đã tiến hành tách chiết DNA plasmid của các khuẩn lạc này. Sau khi sơ bộ sàng lọc các dòng mang plasmid kích thước lớn hơn vector pJET1.2 (Hình 3. 10), chúng tôi đã xử lý enzyme giới hạn Sma I và Not I với 3 dòng khuẩn lạc pJET_hph (1 – 3).


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24





Hình 3. 10: Điện di đồ kiểm tra plasmid tái tổ hợp pJET_hph mang cấu trúc (đoạn khởi đầu GluA + hph + đoạn kết thúc TrypC)

1 – 23: DNA plasmid của các dòng khuẩn lạc (kí hiệu là pJET_hph (1 – 23)

24: Đối chứng – vector pJET1.2

Vì ghép nối GluA promoter + hph + TrypC ter vào vector pJET1.2, chúng đã được xử lý với enzyme Sma I và Not I nên điểm cắt của hai enzyme không bị mất đi, chúng trở thành điểm cắt ở hai đầu của đoạn gen ngoại lai chèn vào vector pJET1.2. Trên điện di đồ (Hình 3. 11), sản phẩm cắt của các dòng tái tổ hợp pJET_hph (1 – 3) bằng enzyme Sma I và Not I đều gồm 2 đoạn tương ứng với hai băng có kích thước là 2,5 kb (kích thước của cấu trúc (đoạn khởi đầu GluA + gen hph + đoạn kết thúc TrypC) và 3 kb (kích thước của vecotr pJET1.2). Do đó, chúng tôi khẳng đã lắp ghép thành công cấu trúc biểu hiện gen kháng hygromycin B (GluA promoter + gen hph + TrypC ter) trong vector tái tổ hợp pKS_hph vào vector pJET1.2. Plasmid tái tổ hợp pJET_hph được nuôi lượng lớn để dùng làm nguyên liệu cho thiết kế vector trung gian mang gen mã hóa xylanase và gen kháng hygromycin B pKS_xylB_hph.








Hình 3. 11: Điện di đồ kiểm tra plasmid tái tổ hợp pJET1_hph bằng cắt enzyme Sma I và Not I

M: Marker 1 kb

1 – 3: Sản phẩm cắt của các dòng khuẩn lạc (kí hiệu pJET_hph (1 – 3) bằng

Sma I và Not I

3.1.2.2. Lắp ghép cấu trúc biểu hiện hph trong vector tái tổ hợp pJET_hph vào vector trung gian


Cấu trúc biểu hiện xylB đã được nối ghép vào vector trung gian mà không làm mất điểm cắt của Sma I và Not I. Hơn nữa, điểm cắt của Kpn I trên vector tái tổ hợp pJET_hph cũng sẽ không bị mất nếu cắt vector tái tổ hợp pJET_hph bằng enzyme Not I vì Not I nằm phía sau Kpn I. Do đó, vector tái tổ hợp pJET1.2 và vector trung gian được cắt bằng enzyme Sma I và Not I, sau đó nối ghép lại với nhau bằng T4 DNA ligase. Sản phẩm nối ghép được biến nạp vào tế bào E. coli. DNA plasmid của các dòng khuẩn lạc đã được tách chiết và kiểm tra sự có mặt của gen mã hóa xylanase và gen kháng hygromycin B bằng kỹ thuật PCR và kỹ thuật cắt enzyme.

3.1.3. Kiểm tra sự có mặt của cấu trúc biểu hiện xylB và hph trong vector trung gian (pKS_xylB_hph)


Theo lý thuyết, khi xử lý vector trung gian đã mang cả hai xylB hph bằng Kpn I, sản phẩm cắt thu được là hai đoạn có kích thước 6,4 kb và 3 kb, trong đó 6,4 kb là kích thước tương ứng với hai cấu trúc biểu hiện xylBhph 3 kb là kích thước của vector pKS-. Phản ứng cắt enzyme được thực hiện ở điều kiện nhiệt độ 37°C trong 1,5 giờ.






Hình 3. 12: Điện di sản đồ sản phẩm cắt plasmid tái tổ hợp pKS_xylB_hph bằng enzyme Kpn I

  1. DNA plasmid pKS_xylB_hph

M: Marker 1 kb

2 – 3: Sản phẩm cắt của plasmid tái tổ hợp có kí hiệu pKS_xylB_hph(9, 18) bằng enzyme Kpn I

Vì kích thước của sản phẩm cắt enzyme lớn, DNA plasmid được điện di cùng để làm đối chứng. Nhờ vậy dễ dàng phân biệt được sản phẩm cắt enzyme trong những trường hợp xử lý enzyme không hoàn toàn hoặc enzyme không hoạt động. Trên điện di đồ (Hình 3. 12), sản phẩm cắt enzyme của 2 dòng plasmid trên giếng số 2 và giếng số 3 gồm hai băng rất rõ nét. Một băng có kích thước khoảng 3 kb (kích thước của vector pKS–); một băng có kích thước 6,4 kb (kích thước của cả cấu trúc biểu hiện xylB hph có trong vector trung gian). Kích thước này hoàn toàn phù hợp với kích thước lý thuyết. Để khẳng định chính xác trình tự được chuyển vào là trình tự xylB và trình tự hph, dòng plasmid tái tổ hợp có kí hiệu pKS_xylB_hph9 được tiếp tực kiểm tra bằng kỹ thuật PCR.


Kb M 1 2




~ 0,7 kb

~ 0,6 kb


0,6


Hình 3. 13: Điện di đồ kiểm tra sự có mặt của xylB hph trong vector trung gian pKS_xylB_hph9

M: Marker 100 bp

1: Sản phẩm PCR của hph

2: Sản phẩm PCR của gen xylB

Sản phẩm PCR của xylB hph rất đặc hiệu (Hình 3. 13) và có kích thước đúng bằng kích thước lý thuyết: xylB có kích thước khoảng 0,7 kb và hph có kích thước khoảng 0,6 kb. Do vậy, chúng tôi khẳng định đã thiết kế thành công vector trung gian pKS_xylB_hph mang hai cấu trúc biểu hiện xylB hph. Dòng plasmid tái tổ hợp có kí hiệu pKS_xylB_hph được nuôi lượng lớn để dùng cho các nghiên cứu thiết kế vector biểu hiện gen mã hóa xylanase.



tải về 369.54 Kb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5   6   7




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương