Effect of Zn on dielectric properties of Mn-Zn spinel ferrite synthesized by coprecipitation



tải về 0.64 Mb.
Chế độ xem pdf
trang3/5
Chuyển đổi dữ liệu15.07.2022
Kích0.64 Mb.
#52655
1   2   3   4   5
1-s2.0-S2214785318307156-main

2. Experimental details 
Mn
1-x
Zn
x
Fe
2
O

spinel ferrite (x = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) was prepared by coprecipitation method. The 
materials used were FeCl
3
.6H
2
O, ZnSO
4
.7H
2
O, MnCl
2
.H
2
O, NaOH, HCl. All chemicals were of analytical grade 
(Merck Emsure). The chemical reaction is showed by 
(1-x)MnCl
2
xZnSO
4
+ 2FeCl
3
+ 8NaOH→ Mn
1-x
Zn
x
Fe
2
O
4
xNa
2
SO
4
+ (8-2x) NaCl + 4H
2
O
(1) 
For x = 0.5 the stoichiometry of Mn:Zn:Fe has ratio =1:1:4. Then the ratio serves as references for others 
concentration. For dielectric properties, the powder was pressed by applying a force of 50.000 N to get circular 
pellets with dimensions 12.5 mm in diameter and 4.3 mm in thickness. 
X-ray diffraction (XRD) analysis has been carried out by using X-Ray diffractometer Shimadzu XD using 
monochromic Cu-Kα radiation (λ = 1.5406 Ǻ) and the recorded angle (2 ) is in the range 20-80
°
. The morphology 
and selected area diffraction (SAED) pattern were investigated by Transmission electron microscope (TEM) Jeol 
Jem- 1400. The room temperature dielectric measurements were conducted using a RC impedance spectroscopy 
analyzer in the frequency range 5 -120 kHz. 
3. Results and discussion 
XRD patterns are shown in Fig. 1a. The patterns confirmed that the formation of cubic spinel structures and all of 
the observed diffraction peaks are indexed based on JCPDS (10-0467). 
The XRD patterns show all the characteristic reflections of ferrite material having most intense (311) peak. For x = 
0.2, 0.4, 0.5, 0.6, 0.7, 0.8 the second phase was observed additional peaks indicating non-spinel phase. There are two 
peaks non spinel phase observed which are indicating related to Zn(OH)
2
(JCPDS no.01-0360) and MnO(OH) 
(JCPDS no.24-0713). 
The variations of lattice constant and crystallite sizes with Zn concentration are shown in Fig. 1b. The size of 
crystallites was calculated by Scherer’s equation. The calculated sizes of the crystallites are found to be ranging 15-
30 nm and decrease by increasing Zn concentration due to the replacement of larger ionic Mn
2+
. The values for 
lattice constant have been calculated from main diffraction peak of each sample using d-spacing values and the 
respective (h k l) parameters by using the classical Nelson-Riley formula [7]. The lattice constant reduces to 
minimun at x = 0.5 and reachs maximum at x = 0.6. The increasing lattice constant with increasing Zn concentration
at x = 0.6 may be attributed the smaller ionic Zn
2+
(0.57Å) ions compared to Mn
2+
(0.66Å) ions. 


 
A. Yusmar et al./ Materials Today: Proceedings 5 (2018) 14955–14959 
14957 
Fig. 1. (a) X-ray diffraction pattern of Mn
1-x
Zn
x
Fe
2
O

ferrite synthesized by coprecipitation method (a) x = 0.2, (b) x = 0.3, (c) x = 0.4, (d) x = 0.5, 
(e) x = 0.6, (f) x = 0.7, and (g) x = 0.8, (b) Variation of average crystal sizes (■) and lattice constant (▼) as a function of Zn concentration. 
The morphology of Mn
1-x
Zn
x
Fe
2
O

spinel ferrite was observed by TEM analysis. TEM image of Mn
1-x
Zn
x
Fe
2
O
4
spinel ferrite is shown in Fig. 2. TEM image shows Mn
1-x
Zn
x
Fe
2
O

as prepared experience agglomeration due to 
small particle size producing high surface energy and surface tension of ferrites. The SEAD pattern confirms that 
Mn
1-x
Zn
x
Fe
2
O

spinel ferrite was polycrystalline materials. 
Fig. 2 (a) TEM image of Mn
1-x
Zn
x
Fe
2
O

(b).SAED image of Mn
1-x
Zn
x
Fe
2
O
4

Figure 3 shows the variation of real dielectric constant (ε’) and imaginary dielectric constant ( ) as a function of 
frequency for the all samples Mn
1-x
Zn
x
Fe
2
O

spinel ferrite at room temperature in the frequency range from 5-120 kHz. 
For all samples, the value of ε’ and ε” is high at low frequency and then it decreases as the frequency increases, 
and finally becomes saturated at high frequency. This is a normal behavior observed in most of the ferrite material 
[3]. The frequency dependent behaviors of dielectric constants in ferrite follow the Maxwell-Wagner’s interfacial 
polarization is in agreement with Koop’s theory [8]. The high values of dielectric constant at low frequency are 
caused by the predominance of species like Fe
2+
ions, interfacial dislocation pile-ups, oxygen vacancies, grain 
boundaries and different kind of polarizations (electronic, atomic, interfacial, and ionic etc.) [9]. In the other hand at 
high frequency, the dielectric constant decreases due to the electronic exchange between the ferrous and ferric ions 

b

tải về 0.64 Mb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương