A fast and elitist multiobjective genetic algorithm: nsga-ii evolutionary Computation, ieee transactions on


results of the constrained NSGA-II on a number of test problems



tải về 0.7 Mb.
Chế độ xem pdf
trang2/11
Chuyển đổi dữ liệu11.05.2022
Kích0.7 Mb.
#51819
1   2   3   4   5   6   7   8   9   10   11
results of the constrained NSGA-II on a number of test problems,
including a five-objective seven-constraint nonlinear problem, are
compared with another constrained multiobjective optimizer and
much better performance of NSGA-II is observed.
Index Terms—Constraint handling, elitism, genetic algorithms,
multicriterion decision making, multiobjective optimization,
Pareto-optimal solutions.
I. I
NTRODUCTION
T
HE PRESENCE of multiple objectives in a problem, in
principle, gives rise to a set of optimal solutions (largely
known as Pareto-optimal solutions), instead of a single optimal
solution. In the absence of any further information, one of these
Pareto-optimal solutions cannot be said to be better than the
other. This demands a user to find as many Pareto-optimal solu-
tions as possible. Classical optimization methods (including the
multicriterion decision-making methods) suggest converting the
multiobjective optimization problem to a single-objective opti-
mization problem by emphasizing one particular Pareto-optimal
solution at a time. When such a method is to be used for finding
multiple solutions, it has to be applied many times, hopefully
finding a different solution at each simulation run.
Over the past decade, a number of multiobjective evolu-
tionary algorithms (MOEAs) have been suggested [1], [7], [13],
Manuscript received August 18, 2000; revised February 5, 2001 and
September 7, 2001. The work of K. Deb was supported by the Ministry
of Human Resources and Development, India, under the Research and
Development Scheme.
The authors are with the Kanpur Genetic Algorithms Laboratory, Indian In-
stitute of Technology, Kanpur PIN 208 016, India (e-mail: deb@iitk.ac.in).
Publisher Item Identifier S 1089-778X(02)04101-2.
[20], [26]. The primary reason for this is their ability to find
multiple Pareto-optimal solutions in one single simulation run.
Since evolutionary algorithms (EAs) work with a population of
solutions, a simple EA can be extended to maintain a diverse
set of solutions. With an emphasis for moving toward the true
Pareto-optimal region, an EA can be used to find multiple
Pareto-optimal solutions in one single simulation run.
The nondominated sorting genetic algorithm (NSGA) pro-
posed in [20] was one of the first such EAs. Over the years, the
main criticisms of the NSGA approach have been as follows.
1) High computational complexity of nondominated sorting:
The currently-used nondominated sorting algorithm has a
computational complexity of
(where
is the
number of objectives and
is the population size). This
makes NSGA computationally expensive for large popu-
lation sizes. This large complexity arises because of the
complexity involved in the nondominated sorting proce-
dure in every generation.
2) Lack of elitism: Recent results [25], [18] show that elitism
can speed up the performance of the GA significantly,
which also can help preventing the loss of good solutions
once they are found.
3) Need for specifying the sharing parameter
Tradi-
tional mechanisms of ensuring diversity in a population so
as to get a wide variety of equivalent solutions have relied
mostly on the concept of sharing. The main problem with
sharing is that it requires the specification of a sharing
parameter (
). Though there has been some work on
dynamic sizing of the sharing parameter [10], a param-
eter-less diversity-preservation mechanism is desirable.
In this paper, we address all of these issues and propose an
improved version of NSGA, which we call NSGA-II. From the
simulation results on a number of difficult test problems, we find
that NSGA-II outperforms two other contemporary MOEAs:
Pareto-archived evolution strategy (PAES) [14] and strength-
Pareto EA (SPEA) [24] in terms of finding a diverse set of so-
lutions and in converging near the true Pareto-optimal set.
Constrained multiobjective optimization is important from the
point of view of practical problem solving, but not much attention
has been paid so far in this respect among the EA researchers.
In this paper, we suggest a simple constraint-handling strategy
with NSGA-II that suits well for any EA. On four problems
chosen from the literature, NSGA-II has been compared with
another recently suggested constraint-handling strategy. These
results encourage the application of NSGA-II to more complex
and real-world multiobjective optimization problems.
In the remainder of the paper, we briefly mention a number of
existing elitist MOEAs in Section II. Thereafter, in Section III,
1089-778X/02$17.00 © 2002 IEEE


DEB et al.: A FAST AND ELITIST MULTIOBJECTIVE GA: NSGA-II
183
we describe the proposed NSGA-II algorithm in details. Sec-
tion IV presents simulation results of NSGA-II and compares
them with two other elitist MOEAs (PAES and SPEA). In Sec-
tion V, we highlight the issue of parameter interactions, a matter
that is important in evolutionary computation research. The next
section extends NSGA-II for handling constraints and compares
the results with another recently proposed constraint-handling
method. Finally, we outline the conclusions of this paper.
II. E
LITIST
M
ULTIOBJECTIVE
E
VOLUTIONARY
A
LGORITHMS
During 1993–1995, a number of different EAs were sug-
gested to solve multiobjective optimization problems. Of them,
Fonseca and Fleming’s MOGA [7], Srinivas and Deb’s NSGA
[20], and Horn et al.’s NPGA [13] enjoyed more attention.
These algorithms demonstrated the necessary additional oper-
ators for converting a simple EA to a MOEA. Two common
features on all three operators were the following: i) assigning
fitness to population members based on nondominated sorting
and ii) preserving diversity among solutions of the same
nondominated front. Although they have been shown to find
multiple nondominated solutions on many test problems and a
number of engineering design problems, researchers realized
the need of introducing more useful operators (which have
been found useful in single-objective EA’s) so as to solve
multiobjective optimization problems better. Particularly,
the interest has been to introduce elitism to enhance the
convergence properties of a MOEA. Reference [25] showed
that elitism helps in achieving better convergence in MOEAs.
Among the existing elitist MOEAs, Zitzler and Thiele’s SPEA
[26], Knowles and Corne’s Pareto-archived PAES [14], and
Rudolph’s elitist GA [18] are well studied. We describe these
approaches in brief. For details, readers are encouraged to refer
to the original studies.
Zitzler and Thiele [26] suggested an elitist multicriterion EA
with the concept of nondomination in their SPEA. They sug-
gested maintaining an external population at every generation
storing all nondominated solutions discovered so far beginning
from the initial population. This external population partici-
pates in all genetic operations. At each generation, a combined
population with the external and the current population is first
constructed. All nondominated solutions in the combined pop-
ulation are assigned a fitness based on the number of solutions
they dominate and dominated solutions are assigned fitness
worse than the worst fitness of any nondominated solution.
This assignment of fitness makes sure that the search is directed
toward the nondominated solutions. A deterministic clustering
technique is used to ensure diversity among nondominated
solutions. Although the implementation suggested in [26] is
, with proper bookkeeping the complexity of SPEA
can be reduced to
.
Knowles and Corne [14] suggested a simple MOEA using
a single-parent single-offspring EA similar to (1 1)-evolution
strategy. Instead of using real parameters, binary strings were
used and bitwise mutations were employed to create offsprings.
In their PAES, with one parent and one offspring, the offspring
is compared with respect to the parent. If the offspring domi-
nates the parent, the offspring is accepted as the next parent and
the iteration continues. On the other hand, if the parent dom-
inates the offspring, the offspring is discarded and a new mu-
tated solution (a new offspring) is found. However, if the off-
spring and the parent do not dominate each other, the choice be-
tween the offspring and the parent is made by comparing them
with an archive of best solutions found so far. The offspring is
compared with the archive to check if it dominates any member
of the archive. If it does, the offspring is accepted as the new
parent and all the dominated solutions are eliminated from the
archive. If the offspring does not dominate any member of the
archive, both parent and offspring are checked for their near-
ness with the solutions of the archive. If the offspring resides in
a least crowded region in the objective space among the mem-
bers of the archive, it is accepted as a parent and a copy of added
to the archive. Crowding is maintained by dividing the entire
search space deterministically in
subspaces, where
is the
depth parameter and
is the number of decision variables, and
by updating the subspaces dynamically. Investigators have cal-
culated the worst case complexity of PAES for
evaluations
as
, where
is the archive length. Since the archive
size is usually chosen proportional to the population size
, the
overall complexity of the algorithm is
.
Rudolph [18] suggested, but did not simulate, a simple elitist
MOEA based on a systematic comparison of individuals from
parent and offspring populations. The nondominated solutions
of the offspring population are compared with that of parent so-
lutions to form an overall nondominated set of solutions, which
becomes the parent population of the next iteration. If the size
of this set is not greater than the desired population size, other
individuals from the offspring population are included. With
this strategy, he proved the convergence of this algorithm to the
Pareto-optimal front. Although this is an important achievement
in its own right, the algorithm lacks motivation for the second
task of maintaining diversity of Pareto-optimal solutions. An ex-
plicit diversity-preserving mechanism must be added to make it
more practical. Since the determinism of the first nondominated
front is
, the overall complexity of Rudolph’s algo-
rithm is also
.
In the following, we present the proposed nondominated
sorting GA approach, which uses a fast nondominated sorting
procedure, an elitist-preserving approach, and a parameterless
niching operator.
III. E
LITIST
N
ONDOMINATED
S
ORTING
G
ENETIC
A
LGORITHM

tải về 0.7 Mb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5   6   7   8   9   10   11




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương