A fast and elitist multiobjective genetic algorithm: nsga-ii evolutionary Computation, ieee transactions on



tải về 0.7 Mb.
Chế độ xem pdf
trang6/11
Chuyển đổi dữ liệu11.05.2022
Kích0.7 Mb.
#51819
1   2   3   4   5   6   7   8   9   10   11
C. Discussion of the Results
Table II shows the mean and variance of the convergence
metric
obtained using four algorithms NSGA-II (real-coded),
NSGA-II (binary-coded), SPEA, and PAES.
NSGA-II (real coded or binary coded) is able to converge
better in all problems except in ZDT3 and ZDT6, where PAES
found better convergence. In all cases with NSGA-II, the vari-
ance in ten runs is also small, except in ZDT4 with NSGA-II
(binary coded). The fixed archive strategy of PAES allows better
convergence to be achieved in two out of nine problems.
Table III shows the mean and variance of the diversity metric
obtained using all three algorithms.
NSGA-II (real or binary coded) performs the best in all nine
test problems. The worst performance is observed with PAES.
For illustration, we show one of the ten runs of PAES with an ar-
bitrary run of NSGA-II (real-coded) on problem SCH in Fig. 5.
On most problems, real-coded NSGA-II is able to find a
better spread of solutions than any other algorithm, including
binary-coded NSGA-II.
In order to demonstrate the working of these algorithms,
we also show typical simulation results of PAES, SPEA, and
NSGA-II on the test problems KUR, ZDT2, ZDT4, and ZDT6.
The problem KUR has three discontinuous regions in the
Pareto-optimal front. Fig. 6 shows all nondominated solutions
obtained after 250 generations with NSGA-II (real-coded). The
Pareto-optimal region is also shown in the figure. This figure
demonstrates the abilities of NSGA-II in converging to the true
front and in finding diverse solutions in the front. Fig. 7 shows
the obtained nondominated solutions with SPEA, which is the
next-best algorithm for this problem (refer to Tables II and III).
Fig. 5.
NSGA-II finds better spread of solutions than PAES on SCH.
Fig. 6.
Nondominated solutions with NSGA-II (real-coded) on KUR.


190
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 2, APRIL 2002
Fig. 7.
Nondominated solutions with SPEA on KUR.
Fig. 8.
Nondominated solutions with NSGA-II (binary-coded) on ZDT2.
In both aspects of convergence and distribution of solutions,
NSGA-II performed better than SPEA in this problem. Since
SPEA could not maintain enough nondominated solutions in
the final GA population, the overall number of nondominated
solutions is much less compared to that obtained in the final
population of NSGA-II.
Next, we show the nondominated solutions on the problem
ZDT2 in Figs. 8 and 9. This problem has a nonconvex Pareto-op-
timal front. We show the performance of binary-coded NSGA-II
and SPEA on this function. Although the convergence is not
a difficulty here with both of these algorithms, both real- and
binary-coded NSGA-II have found a better spread and more
solutions in the entire Pareto-optimal region than SPEA (the
next-best algorithm observed for this problem).
The problem ZDT4 has 21
or 7.94(10 ) different local
Pareto-optimal fronts in the search space, of which only one
corresponds to the global Pareto-optimal front. The Euclidean
distance in the decision space between solutions of two con-
secutive local Pareto-optimal sets is 0.25. Fig. 10 shows that
both real-coded NSGA-II and PAES get stuck at different
local Pareto-optimal sets, but the convergence and ability
to find a diverse set of solutions are definitely better with
NSGA-II. Binary-coded GAs have difficulties in converging
Fig. 9.
Nondominated solutions with SPEA on ZDT2.
Fig. 10.
NSGA-II finds better convergence and spread of solutions than PAES
on ZDT4.
near the global Pareto-optimal front, a matter that is also been
observed in previous single-objective studies [5]. On a similar
ten-variable Rastrigin’s function [the function
here],
that study clearly showed that a population of size of about
at least 500 is needed for single-objective binary-coded GAs
(with tournament selection, single-point crossover and bitwise
mutation) to find the global optimum solution in more than
50% of the simulation runs. Since we have used a population of
size 100, it is not expected that a multiobjective GA would find
the global Pareto-optimal solution, but NSGA-II is able to find
a good spread of solutions even at a local Pareto-optimal front.
Since SPEA converges poorly on this problem (see Table II),
we do not show SPEA results on this figure.
Finally, Fig. 11 shows that SPEA finds a better converged
set of nondominated solutions in ZDT6 compared to any other
algorithm. However, the distribution in solutions is better with
real-coded NSGA-II.

tải về 0.7 Mb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5   6   7   8   9   10   11




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương