J. Soc. Korea Ind. Syst. Eng Vol. 9, No. 56-63, September 2016



tải về 0.73 Mb.
Chế độ xem pdf
trang1/5
Chuyển đổi dữ liệu11.05.2022
Kích0.73 Mb.
#51824
  1   2   3   4   5
An Algorithm for the Loading Planning of Air Express Cargoes



J. Soc. Korea Ind. Syst. Eng Vol. 39, No. 3 : 56-63, September 2016
ISSN : 2005-0461(print)
http://dx.doi.org/10.11627/jkise.2016.39.3.056
ISSN : 2287-7975(online)
An Algorithm for the Loading Planning of Air Express Cargoes
Dong-Hoon Son*․Hwa-Joong Kim**

*Graduate School of Logistics, Inha University
**Asia Pacific School of Logistics, Inha University
항공 특송화물 탑재계획을 위한 알고리즘
손동훈*․김화중**

*인하대학교 물류전문대학원
**인하대학교 아태물류학부
For air express service providers offering various express delivery services such as overnight delivery and next-business day 
delivery services, establishing quickly cargo loading plans is one of important issues owing to the characteristics of air express 
business, i.e., a short amount of time is available to complete all cargo loading operations before flight departure after receiving 
air express containers, pallets and bulks. On the other hand, one of major concerns in the air cargo loading planning is to make 
a plan that insures the stability of an aircraft to avoid take-off, flight, and landing accidents. To this end, this paper considers 
an air cargo loading planning problem, which is the problem of determining locations in the aircraft cargo space where air containers
pallets and bulks to be loaded while insuring the aircraft stability, motivated from DHL and Air Hong Kong. The objective 
of the problem is to maximize the total revenue gained from loading air express containers, pallets and bulks. To solve the 
problem, this paper suggests a simulated annealing algorithm to overcome impracticality of the integer programming model devel-
oped by a previous study requiring excessive computation time. The results of computational experiments show that the heuristic 
algorithm is a viable tool for establishing express cargo loading plans as giving robust and good solutions in a short amount 
of computation time. Scenario analyses are performed to investigate the effect of the current activities of air express carriers 
on the revenue change and to draw practical implications for air express service providers.
Keywords:Air Express Service, Cargo Loading Planning, Simulated Annealing Algorithm
1. Introduction
1)
Air express market has rapidly expanded during the past 
two decades, e.g., the intra-Asia market has grown in excess 
of 6.5% per annum in recent years [2]. Air express service 
providers such as FedEx, UPS, and DHL offer various ex-
press delivery services such as overnight delivery and next-
business day delivery services. Although on-time delivery is 
Received 16 August 2016; Finally Revised 22 August 2016; 
Accepted 23 August 2016
†Corresponding Author : hwa-joong.kim@inha.ac.kr
a key issue for providing the express delivery services [15], 
there are many obstacles disturbing them such as late arriving 
cargoes and late-generated loading plans. Moreover, the serv-
ice providers receive cargoes until 30 minutes before flight 
departure to catch as many as cargoes [3]. This implies that 
a short amount of time is available to complete all operations 
before flight departure including establishing loading plans. 
One of major concerns in the air cargo loading planning 
is to establish a plan that insures the stability of an aircraft 
to avoid take-off, flight, and landing accidents. See Park et 
al. [9] for the aircraft operational risk. Therefore, this paper 


An Algorithm for the Loading Planning of Air Express Cargoes
57
considers an air cargo loading planning problem, which is 
the problem of determining locations in the aircraft cargo 
space where air containers, pallets and bulks to be located 
while insuring the aircraft stability. As reviewed below, pre-
vious research except for Kim et al. [3] did not or simply 
considered the aircraft stability restriction. Instead, we con-
sider all of stability restrictions considered when planners 
in an air express carrier establish manually a loading plan 
in practice. The objective of the problem is to maximize the 
total revenue gained from loading cargoes. 
We confine our review to previous studies after 1985 be-
cause Martin-Vega [6] provided a comprehensive review of 
the literature on the air cargo loading planning. Ng [8] sug-
gested a multi-criteria goal programming model for max-
imizing the cargo loading and minimizing exceeding the ca-
pacity of an aircraft. Amiouny et al. [1] consider a special 
case of our problem with the objective of making a center 
of gravity be as close as possible to a specific target point. 
Their heuristic produced good solutions in terms of solution 
quality and computation time. Later, Marthur [5] suggested 
a better heuristic algorithm for Amiouny’s problem. Thomas 
et al. [11] presented a case study in FedEx using the same 
aircraft model used in our research. To solve the problem, 
they suggested a heuristic algorithm consisting of two phases : 
the first phase generates an initial loading plan using an in-
teger program without specific objective function; and then 
a feasible loading plan is generated by recursively eliminat-
ing non-preferred containers from the initial solution until 
the solution satisfies all constraints. Mongeau and Bes [7] 
considered the problem with the objective of maximizing the 
total weight of cargoes and suggested an integer program 
while considering three stability restrictions : total weight 
limit of cargoes, weight limit of locations. Recently, Yan 
et al. [13, 14] considered a loading planning problem in a 
hub-and-spoke system by considering different destinations 
of cargoes. However, the stability restriction was not consid-
ered in these studies. Lurkin and Schyns [4] proposed an 
integer program by considering multiple destinations of 
containers. Vancroonenburg et al. [12] considered the loading 
problem with the objective of maximizing the total profit 
obtained from delivering containers while minimizing devia-
tion of the aircraft’s center-of-gravity. Finally, Kim et al. 
[3] considered the problem, the same as in the current paper
motivated from DHL and Air Hong Kong. They defined the 
problem as methods used when planners in Air Hong Kong 
manually make loading plans and suggested an integer pro-
gram to solve the problem. 
The current paper extends Kim et al. [3] who suggested 
only an integer program, which itself is not a viable tool 
especially in the air express industry where cargo loading 
plans should be quickly established as described above. 
According to a manager in Air Hong Kong, planners in the 
company make a cargo loading plan within 20 minutes due 
to the characteristics of their business. However, the integer 
program requires more than 20 minutes in many cases in 
obtaining an optimal solution as reported in Section 4. 
Therefore, the current paper suggests a quickly-running heu-
ristic that can obtain good solutions. In addition, to draw 
practical implications for air express service providers, sce-
nario analyses are performed to analyze the effect of their 
current activities. 
The remainder of this paper is organized as follows. The 
next section describes the problem along with stability 
restrictions. Section 3 presents a simulated annealing (SA) 
algorithm with methods for generating an initial solution and 
improving the solution. Section 4 summarizes the results of 
computational experiments and scenario analyses. Section 5 
concludes the paper by summarizing research results and of-
fering future research directions.
2. Problem Description
The problem considered in this research is to determine 
the locations of containers, pallets, and bulks while satisfying 
the stability restrictions of an aircraft, Airbus A300-600 in 
. Since a detailed description on the problem is 
given in Kim et al. [3] and a long description is needed 
to exactly define the problem, this section shortly describes 
stability restrictions, which are major concerns in the air car-
go loading planning. 
There are four types of the stability restrictions for the 
aircraft : cumulative load limit; location load limit; lateral 
load imbalance limit; and center-of-gravity restriction. These 
limits are essential for the sake of safe take-off, in-flight, 
and landing of the aircraft. First, each zone depicted in 
 has its own cumulative load limit. The cum-
mulative load limit of a zone implies that the total weight 
of all cargoes in previous zones located on the left or right 
side of the zone and itself should not be more than the limit 
of the zone. For example, the total weight of all cargoes 
loaded in zones A, B, C, D, E should not be more than 


Dong-Hoon Son․Hwa-Joong Kim
58
(b) Cross section
P
O
N
M
L
K
J
I
G H
F
E
D
C
B
A
zone id.
left lane
right lane
Cargo Space of Airbus A300-600 (adapted from Kim et al. [3])
the cumulative load limit of zone E. Second, the location 
load limit implies that the weight of cargoes loaded in a 
location depicted in  should not be more than 
the limit of the location. Third, the lateral load imbalance 
limit implies that the weight difference between left and right 
lanes of the aircraft denoted in 
 must not ex-
ceed the imbalance limit. Finally, the center-of-gravity re-
striction is literally related to maintaining the aircraft’s cen-
ter-of-gravity after loading all cargoes and having crews on 
board. Since it requires a lengthy explanation, we omit the 
detailed description to avoid duplication. See Kim et al. [3] 
having described it in detail along with examples. 
Now, the problem considered in this research is defined 
as follows : the problem is to determine the loading locations 

tải về 0.73 Mb.

Chia sẻ với bạn bè của bạn:
  1   2   3   4   5




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương