TIÊu chuẩn ngành 22tcn 262-200


IV.8 Các nguyên tắc và trình tự lựa chọn giải pháp thiết kế



tải về 327.74 Kb.
trang3/4
Chuyển đổi dữ liệu10.08.2016
Kích327.74 Kb.
#16854
1   2   3   4

IV.8 Các nguyên tắc và trình tự lựa chọn giải pháp thiết kế

IV.8.1 Trình tự tiến hành:

Để làm cơ sở đề xuất các giải pháp thiết kế, trước tiên phía tư vấn thiết kế cần phải tính toán đánh giá mức độ ổn định và diễn biến độ lún đối với trường hợp nền đắp trực tiếp trên đất yếu (không áp dụng một biện pháp xử lý nào khác) theo các phương pháp hướng dẫn ở mục V và mục VI. Việc tính toán đánh giá phải được tiến hành riêng đối với từng đoạn có kích thước nền đắp và có các điều kiện cấu tạo tầng lớp đất yếu cũng như đặc trưng kỹ thuật các đất yếu khác nhau. Nếu kết quả tính toán cho thấy không đảm bảo được các yêu cầu và tiêu chuẩn thiết kế nói ở mục II và điều IV.1 thì mới đề xuất các phương pháp xử lý cho mỗi đoạn đó, trước hết là các phương án đơn giản nhất (kể cả phương án thay đổi kích cỡ nền đắp về chiều cao và độ dốc mái ta luy), hoặc cũng có thể đưa ra các phương án kết hợp đồng thời một số giải pháp trong các giải pháp nói ở mục IV và cả các giải pháp khác chưa đề cập đến trong quy trình này (ví dụ giải pháp kéo dài cầu dẫn qua vùng đất yếu …). Đối với mỗi phương án đề xuất lại phải tính toán đánh giá về ổn định và lún rồi thông qua tính toán, phân tích so sánh về kinh tế - kỹ thuật một cách toàn diện để lựa chọn giải pháp áp dụng. Khi phân tích nên xét đến cả ảnh hưởng gây lún của nền đắp đối với các công trình nhân tạo hiện có.

IV.8.2 Trong mọi trường hợp cần phải tận dụng hết thời gian thi công cho phép: Đắp trên đất yếu phải khởi công sớm nhất và nếu cần thiết có thể cho phép kéo dài tối đa tới kỳ hạn cuối cùng trong tiến độ chung hoặc chia làm nhiều đợt đắp, vừa đắp vừa chờ cố kết. Tận dụng thời gian tối đa như vậy là một biện pháp đem lại hiệu quả kinh tế - kỹ thuật đáng kể, do đó nên kết hợp áp dụng cùng với mọi giải pháp xử lý khác.

IV.8.3 Trong quá trình thi công trên thực tế, phải luôn xem xét kết quả theo dõi hệ thống quan trắc (mục II.3), so sánh nó với các yêu cầu khống chế về ổn định và biến dạng nói ở II.1.2 và II.2 để kịp thời điều chỉnh lại tốc độ đắp nếu cần thiết, đồng thời có thể điều chỉnh cả các giải pháp thiết kế theo hướng có lợi hơn về kinh tế - kỹ thuật so với thiết kế ban đầu. Đặc biệt là phải dựa vào quan trắc lún thực như nói ở điều II.2.5 để dự báo lún cố kết còn lại khi quyết định thời điểm có thể thi công các hạng mục công trình có liên quan đến yêu cầu khống chế lún của nền đắp trên đất yếu (các dự báo lún theo tính toán chỉ dùng để đưa ra các giải pháp thiết kế).

IV.8.4 Đối với trường hợp chiều dài tuyến đường qua vùng đất yếu có các đặc trưng địa kỹ thuật tương đối đồng nhất từ 500 m trở lên thì nên tổ chức thi công làm thử trên thực địa một đoạn nền đắp dài 30 - 50 m (không nên ngắn hơn 2 lần bề rộng đáy nền đắp) có bố trí các thiết bị quan trắc như nói ở mục II.3 để từ đó chính xác hoá các giải pháp thiết kế trước khi thi công đồng loạt. Việc làm thử này phải được thực hiện trong giai đoạn thiết kế kỹ thuật và việc điều chỉnh sau làm thử sẽ được thực hiện trong giai đoạn thiết kế lập bản vẽ thi công chi tiết.

Đối với trường hợp chiều cao nền đắp thấp càng nên làm thử. Thời gian theo dõi quan trắc đoạn thí nghiệm làm thử nên từ 6 - 12 tháng.

V. TÍNH TOÁN ỔN ĐỊNH NỀN ĐẮP TRÊN ĐẤT YẾU

V.1 Phương pháp tính toán

V.1.1 Trong quy trình này sử dụng phương pháp phân mảnh cổ điển hoặc phương pháp Bishop với mặt trượt tròn khoét xuống vùng đất yếu làm phương pháp cơ bản để tính toán đánh giá mức độ ổn định của nền đắp trên đất yếu.

V.1.2 Phương pháp phân mảnh cổ điển được tính theo sơ đồ ở hình V.1 và hệ số ổn định Kj ứng với một mặt trượt tròn có tâm Oj được xác định theo công thức V.1:

Hình V.1: Sơ đồ tính ổn định theo phương pháp phân mảnh với mặt trượt tròn;

(hx là chiều cao quy đổi tải trọng xe cộ xác định theo công thức II.1)

Trong hình (V.1) mảnh trượt i rộng di chịu tác dụng của trọng lượng bản thân Qi, lực động đất Wi (nếu cần xét đến); ngoài ra, nếu có rải vải địa kỹ thuật để tăng cường ổn định thì toàn khối trượt còn chịu tác dụng của lực giữ F (xem hình IV.1 và điều IV.7.1). Wi được xác định ở điều II.4.4, còn F được xác định như nói ở điều IV.7.1 và IV.7.2. Các lực tác dụng này có cánh tay đòn so với tâm trượt Oj là Yi (lực Wi) và Y (lực F). Đối với một mặt trượt tròn có tâm Oj thì Yi sẽ thay đổi theo vị trí trọng tâm của mảnh trượt, còn Y sẽ là không đổi.

li là chiều dài cung trượt trong phạm vi mảnh i

n là tổng số mảnh trượt được phân mảnh trong phạm vi khối trượt

i là góc giữa pháp tuyến của cung li với phương của lực Qi (hình V.1)

Rj là bán kính đường cong của cung trượt

ci và i là lực dính đơn vị và góc ma sát trong của lớp đất chứa cung trượt li của mảnh trượt i (nếu cung li nằm trong vùng nền đắp thì dùng trị số lực dính và góc ma sát trong của đất đắp). Đối với vùng đất yếu, khi dùng kết quả thí nghiệm cắt cánh hiện trường thì áp dụng i = 0, còn ci được lấy bằng sức chống cắt tính toán (xem V.3.2).

V.1.3 Khi tính toán theo phương pháp Bishop thì hệ số ổn định Kj ứng với một mặt trượt tròn có tâm Oj (hình V.1) được xác định theo công thức sau :





Các ký hiệu trong (V.2) và (V.3) đều có ý nghĩa như trong (V.1) ở trên hình

V.1. Cách xác định chúng cũng hoàn toàn giống như khi tính toán theo phương pháp phân mảnh cổ điển. Chỉ khác là quá trình tính toán theo (V.2) và (V.3) là quá trình tính lặp mò dần vì mi ở (V.3) lại phụ thuộc vào Kj; do vậy, nếu sử dụng phương pháp Bishop thì buộc phải sử dụng các chương trình tính trên máy vi tính.

V.2 Những chú ý khi vận dụng phương pháp tính toán phân mảnh cổ điển và Bishop

V.2.1 Bề rộng mảnh trượt di không được quá 2 m và phải phân mảnh sao cho chiều dài cung trượt trong phạm vi mỗi mảnh li phải nằm trong cùng một lớp đất. Mỗi mảnh trượt bao gồm tất cả các lớp đất kể từ mặt trượt trở lên (có thể gồm cả tầng cát đệm, phần đắp chìm trong đất yếu, phần lớp đất không yếu, phần đắp phản áp, phần đắp gia tải trước và phần chiều cao đắp tương ứng với tải trọng xe cộ quy đổi).

V.2.2 Xác định trọng lượng bản thân mỗi mảnh trượt Qi như sau:

Trong đó: hk là chiều cao của mảnh i trong phạm vi mỗi lớp đất khác nhau có dung trọng thể tích khô k khác nhau (N là số các lớp đất khác nhau trong phạm vi mảnh i). Đối với các lớp đất yếu nằm dưới mức nước ngầm thì trị số k phải dùng trọng lượng thể tích đẩy nổi (trừ đi 1).

Chú ý rằng, đối với các mảnh trượt nằm trong phạm vi bề rộng của nền đường thì khi tính Qi phải kể đến thêm chiều cao quy đổi tải trọng xe cộ hx xác định theo công thức (II.1) như hình V.1 và chiều cao đắp gia tải trước (nếu có).

V.2.3 Phải tính toán với nhiều mặt trượt tròn (Oj, Rj) khác nhau để xác định được mặt trượt nguy hiểm nhất và hệ số ổn định nhỏ nhất Kj min (viết tắt là Kmin). Trị số Kmin này được dùng để đánh giá đối với các yêu cầu về ổn định trượt trồi nói ở II.1. Chú ý rằng phải vẽ được (xác định được) vị trí mặt trượt nguy hiểm nhất dự báo theo tính toán để làm cơ sở cho việc thiết kế bố trí các giải pháp xử lý như bề rộng bệ phản áp (điều IV.2.4), chiều sâu bố trí phương tiện thoát nước thẳng đứng (điều IV.6.7) hoặc để xác định vùng hoạt động khi tăng cường ổn định bằng vải địa kỹ thuật (hình IV.1). Trong trường hợp lớp đất yếu mỏng, mặt trượt có thể gồm các đoạn cung tròn kết hợp với một đoạn thẳng ở đáy lớp đất yếu (đặc biệt là khi đáy có độ dốc trên 10o).

V.2.4 Nếu không sử dụng máy tính thì có thể mò tìm mặt trượt nguy hiểm nhất bằng cách cho vị trí tâm Oj của chúng thay đổi trong vùng "tâm trượt nguy hiểm nhất" như thể hiện trên hình V.2:

Hình V.2: Sơ đồ xác định vùng tâm trượt nguy hiểm


(I là điểm giữa mái ta luy nền đắp, C là chân ta luy nền đắp)

Nếu nền đắp bằng cát (lực dính c = 0) thì giao điểm giữa mặt trượt nguy hiểm nhất với bề rộng nền đường có thể thay đổi trên cả phạm vi AB, còn nếu đắp đất có lực dính lớn thì giao điểm này thường qua điểm A hoặc lân cận A (từ A đến giữa tim nền đắp).

V.2.5 Các chương trình tính trên máy vi tính để xác định hệ số ổn định Kj và mò tìm hệ số ổn định nhỏ nhất Kmin phải có khả năng bảo đảm được các yêu cầu tính toán nói ở các điều V.1, V.2.1, V.2.3.

V.2.6 Khi đánh giá mức độ ổn định của nền đắp trên đất yếu có dùng các giải pháp xử lý khác nhau nói ở IV.2, IV.3, IV.4, IV.6, IV.7 thì vẫn áp dụng các phương pháp nói ở V.1 và những yêu cầu vận dụng nói ở V.2 (đặc biệt là điều V.2.1 và V.2.2) Điều này đòi hỏi trước khi giả thiết các mặt trượt và tiến hành tính toán phải vẽ mặt cắt ngang nền đắp với đầy đủ các lớp nền thiên nhiên phía dưới và các cấu tạo theo yêu cầu của giải pháp xử lý tương ứng (chiều sâu đào đất yếu, tầng đệm cát, bệ phản áp, hình dạng khối đất đắp gia tải trước, bố trí các lớp vải địa kỹ thuật...) trong đó chiều cao nền đắp phải kể thêm chiều cao quy đổi tải trọng xe cộ.

V.2.7 Nếu áp dụng các giải pháp đắp thành nhiều đợt thì việc xác định chiều cao đắp cho phép đối với mỗi đoạn được làm như sau:

□ Giả thiết một chiều cao đắp nền

□ Tính toán mức độ ổn định của nền ở chiều cao đắp này theo phương pháp nói ở V.1 và V.2 tương ứng với sức chống cắt của đất yếu được xác định khác nhau cho mỗi đợt đắp (xem phần V.3). Nếu kết quả nghiệm toán thỏa mãn điều kiện nói ở II.1.1 và trị số Kmin không quá lớn (nên tận dụng Kmin = 1,2) thì chấp nhận chiều cao giả thiết nói trên là chiều cao thiết kế cho mỗi đợt đắp, nếu không thì giả thiết lại cho đến khi kết quả nghiệm toán cho Kmin = 1,2.

Cho phép sử dụng các loại toán đồ tra sẵn chiều cao đắp giới hạn Hgh hoặc các công thức tính tải trọng giới hạn Pgh tùy thuộc các đặc trưng sức chống cắt của đất yếu để đưa ra trị số chiều cao đắp nền giả thiết nói trên một cách nhanh chóng nhưng sau đó vẫn phải nghiệm toán lại theo phương pháp mặt trượt tròn nói ở V.1 và V.2 (chú ý rằng Pgh = d . Hgh với d là dung trọng của đất đắp nền đường hoặc đắp gia tải trước).

Nếu sử dụng các chương trình tính toán trên máy vi tính có sẵn thì có thể giả thiết 3 - 4 trị số chiều cao đắp rồi cho chạy máy để xác định trị số Kmin tương ứng với mỗi chiều cao đó và thông qua quan hệ Kmin = f (Hđắp) để xác định chiều cao đắp cho phép tương ứng Kmin = 1,2.

V.3 Các trường hợp tính toán ổn định và thông số tính toán tương ứng

V.3.1 Có 3 trường tính toán ổn định đòi hỏi phải sử dụng sức chống cắt tính toán ở trạng thái khác nhau như dưới đây:

1. Trường hợp I: Nền đắp được xây dựng trong điều kiện đất yếu phía dưới chưa kịp cố kết hoặc có cố kết nhưng ở mức độ không đáng kể như các trường hợp cụ thể dưới đây:

□ Trường hợp tính toán đánh giá mức độ ổn định phục vụ đề xuất các giải pháp thiết kế nói ở điều IV.8.1;

□ Trường hợp áp dụng các giải pháp đắp trực tiếp, đắp có rải vải địa kỹ thuật (IV.2 và IV.7), đào một phần đất yếu (IV.3), dùng bệ phản áp (IV.4);

□ Trường hợp đắp nền đợt đầu tiên khi áp dụng giải pháp đắp thành nhiều đợt (IV.8.2 và V.2.7), khi áp dụng giải pháp tầng đệm cát (IV.5) và thoát nước thẳng đứng (IV.6).

2. Trường hợp II: Nền đắp trên đất yếu sau khi hoàn thành đưa vào khai thác sử dụng, đất yếu phía dưới đã đạt mức độ cố kết 90% trở lên.

3. Trường hợp III: Nền đắp trong quá trình xây dựng với giải pháp đắp làm nhiều đợt, vừa đắp vừa chờ cố kết (IV.8.2), mức độ cố kết của đất yếu tăng dần trong những đợt đắp thứ hai, thứ ba.

Nếu kết quả tính toán ổn định theo trường hợp I với chiều cao đắp một lần bằng chiều cao nền đắp thiết kế đã cho thấy đảm bảo được các yêu cầu nói ở II.1.1 thì dù áp dụng giải pháp xử lý nào cũng không cần đề cập đến việc tính toán theo các trường hợp II và III.

V.3.2 Đối với trường hợp I, các đặc trưng về sức chống cắt đưa vào tính toán phải được xác định như sau:

□ Đối với đất nền đắp và lớp cát đệm: Trị số lực dính c và góc ma sát  được xác định bằng mẫu chế bị ở độ chặt và độ ẩm đúng như thực tế thông qua thí nghiệm cắt nhanh không thoát nước trong phòng thí nghiệm. Nếu nền đắp bị ngập nước hai bên thì mẫu cắt cần chế bị ở độ ẩm bất lợi nhất tương ứng.

□ Đối với các lớp đất tự nhiên yếu hoặc không yếu nằm dưới nền đắp: Sử dụng kết quả thí nghiệm cắt cánh hiện trường và trị số lực dính tính toán Cu được xác định theo công thức sau (xem như góc ma sát  = 0):



Trong đó:

Ss là sức chống cắt nguyên dạng (MPa) không thoát nước từ thí nghiệm cắt cánh hiện trường

 là hệ số hiệu chỉnh (theo Bjerum) xét đến ảnh hưởng bất đẳng hướng của đất, tốc độ cắt và tính phá hoại liên tiếp của nền đất yếu tùy thuộc vào chỉ số dẻo của đất như ở bảng V.1

Bảng V.1: Trị số  tùy thuộc vào chỉ số dẻo Ip

Ip

10

20

30

40

50

60

70



1,09

1,0

0,925

0,86

0,80

0,75

0,70

(Nội suy bậc nhất giữa các khoảng trong bảng)

□ Chỉ khi không có cách nào có được thiết bị thí nghiệm cắt cánh hiện trường thì mới được dùng đặc trưng sức chống cắt theo kết qủa thí nghiệm cắt nhanh không thoát nước ở trong phòng thí nghiệm (ci, i).

V.3.3 Đối với trường hợp II: Đặc trưng sức chống cắt của các lớp đất yếu và không yếu nằm dưới nền đắp (C và ) được xác định với mẫu nguyên dạng thông qua thí nghiệm cắt nhanh cố kết trong phòng thí nghiệm; đối với các lớp đất đắp (kể cả tầng cát đệm, nếu có) vẫn được xác định như ở trường hợp I.

V.3.4 Đối với trường hợp III: Các đặc trưng sức chống cắt của các lớp đất và nền đắp đều được xác định như đối với trường hợp I nhưng trị số Ss trong công thức V.5 nay được thay bằng trị số Su xác định như sau:



Trong đó:

U là mức độ cố kết dự báo có thể đạt được kể từ lúc bắt đầu đắp nền đợt đầu tiên cho đến khi bắt đầu đắp nền đợt II tiếp theo: U tính bằng phần số thập phân của 1 (ví dụ đất cố kết 50% thì U = 0,5) và được dự tính theo cách nói ở điều VI.3.1.

Ss có ý nghĩa như ở công thức (V.5) với thí nghiệm cắt nhanh hiện trường từ lúc chưa đắp (đất ở trạng thái tự nhiên): z, pz, vz có ý nghĩa và được xác định như ở công thức (IV.5 và IV.6) với tải trọng đắp đợt đầu. Với Su tính được theo (V.6) sẽ tính được lực dính tính toán (tức là sức chống cắt tính toán) theo công thức (V.5) tùy thuộc mức độ cố kết của đất yếu sau khi đắp đợt đầu. Trị số sức chống cắt tính toán này khi U = 1 phải nhỏ hơn trị số sức chống cắt của trường hợp II



Trong đó: ci và i được xác định thông qua thí nghiệm cắt nhanh cố kết như nói ở V.3.3. Nếu Cu tính theo công thức (V.5 và V.6) lớn hơn trị số vế phải của công thức (V.7) thì chỉ được dùng trị số vế phải của (V.7) để tính toán.

Trường hợp sử dụng kết qủa cắt nhanh không thoát nước ở trong phòng thí nghiệm để tính toán thì tương ứng với mức độ cố kết đạt được U, sức chống cắt của đất yếu lớp i được xem là được tăng thêm một trị số ci.

và trị số lực dính đưa vào tính toán theo các công thức (V.1) hoặc (V.3) sẽ là = ci + Δci. Trị số sức chống cắt tính toán với i này cũng phải thỏa mãn điều kiện (V.7).

V.3.5 Việc tính toán ổn định với các cách xác định sức chống cắt tính toán nói trên chỉ để phục vụ cho những dự kiến thiết kế. Trong trường hợp I và II để đảm bảo nền luôn ổn định trong quá trình đắp phải thực hiện đầy đủ các yêu cầu về quan trắc lún và di động ngang nói ở mục II.3.

VI. TÍNH TOÁN LÚN NỀN ĐẮP TRÊN ĐẤT YẾU

VI.1 Tính độ lún cố kết Sc

VI.1.1 Độ lún cố kết Sc được dự tính theo phương pháp phân tầng lấy tổng với công thức sau:



Trong đó:

Hi là bề dày lớp đất tính lún thứ i (phân thành n lớp có các đặc trưng biến dạng khác nhau), i từ 1 đến n lớp; Hi ≤ 2,0 m;

là hệ số rỗng của lớp đất i ở trạng thái tự nhiên ban đầu (chưa đắp nền bên trên).

chỉ số nén lún hay độ dốc của đoạn đường cong nén lún (biểu diễn dưới dạng e ~ log) trong phạm vi i > của lớp đất i.

là chỉ số nén lún hay độ dốc của đoạn đường cong nén lún nói trên trong phạm vi i < (còn gọi là chỉ số nén lún hồi phục ứng với quá trình rỡ tải như ở hình 1 Phụ lục 1).

, , là áp lực (ứng suất nén thẳng đứng) do trọng lượng bản thân các lớp đất tự nhiên nằm trên lớp i, áp lực tiền cố kết ở lớp i và áp lực do tải trọng đắp gây ra ở lớp i (xác định các trị số áp lực này tương ứng với độ sâu z ở chính giữa lớp đất yếu i).

Chú ý:

a) Khi > (đất ở trạng thái chưa cố kết xong dưới tác dụng của trọng lượng bản thân) và khi > (đất ở trạng thái cố kết bình thường) thì công thức (V.8) chỉ còn một số hạng sau (không tồn tại số hạng có mặt ).

b) Khi < (đất ở trạng thái quá cố kết) thì tính độ lún cố kết Sc theo VI-1 sẽ có 2 trường hợp:

□ Nếu > - thì áp dụng đúng công thức (VI.1) với cả hai số hạng;

□ Nếu > - thì áp dụng công thức sau:

VI.1.2 Xác định các thông số và trị số tính toán trong công thức dự tính lún (VI.1)

□ Các thông số , được xác định thông qua thí nghiệm nén lún không nở hông đối với các mẫu nguyên dạng đại diện cho lớp đất yếu i theo hướng dẫn ở TCVN 4200-86 và các hướng dẫn bổ sung ở Phụ lục I của bản Quy trình này và ở điều III.3.5 và III.3.7.

□ Trị số ứng suất (áp lực) được xác định như hướng dẫn ở điều IV.6.1 (công thức IV.6).

□ Các trị số áp lực được tính theo toán đồ Osterberg ở Phụ lục II như đã nói ở IV.6.1) nhưng chỉ ứng với tải trọng nền đắp thiết kế (điều II.2.2) và có xét đến dự phòng lún như nói ở VI.3.

VI.1.3 Chiều sâu vùng đất yếu bị lún dưới tác dụng của tải trọng đắp hay phạm vi chịu ảnh hưởng của tải trọng đắp za được xác định theo điều kiện:

za = 0,15. vza (VI.2)

Trong đó:

za là ứng suất do tải trọng đắp gây ra ở độ sâu Za (nếu phục vụ cho việc tính độ lún tổng cộng S thì tải trọng đắp cũng chỉ gồm tải trọng đắp thiết kế)

vza là ứng suất do trọng lượng bản thân các lớp phía trên gây ra ở độ sâu Za (có xét đến áp lực đẩy nổi nếu các lớp này nằm dưới mức nước ngầm)

Như vậy việc phân tầng lấy tổng để tính độ lún tổng cộng theo (VI.1) chỉ thực hiện đến độ sâu za nói trên và đó cũng là độ sâu cần thăm dò khi tiến hành khảo sát địa kỹ thuật vùng đất yếu như nói ở III.3.2.

VI.2 Dự tính độ lún tổng cộng S và độ lún tức thời Si

VI.2.1 Độ lún tổng cộng S được dự đoán theo quan hệ kinh nghiệm sau:

S = m . Sc (VI.3)

Với m = 1,1  1,4; nếu có các biện pháp hạn chế đất yếu bị đẩy trồi ngang dưới tải trọng đắp (như có đắp phản áp hoặc rải vải địa kỹ thuật...) thì sử dụng trị số m = 1,1; ngoài ra chiều cao đắp càng lớn và đất càng yếu thì sử dụng trị số m càng lớn.

VI.2.2 Độ lún tức thời Si nói ở điều II.2.1 cũng được dự tính theo quan hệ sau:

Si = (m - 1). Sc (VI.4)

với m có ý nghĩa và xác định như ở điều VI.2.1.

VI.2.3 Trình tự tính toán lún của nền đắp trên đất yếu

Để tính độ lún tổng cộng S theo công thức (VI.3) thì phải tính được độ lún cố kết Sc theo (VI.1) hoặc (VI.1'), tức là phải xác định được các thông số và trị số tính toán nói ở VI.1.2, trong đó trị số phụ thuộc vào tải trọng đắp, tải trọng này bao gồm cả phần đắp lún vào trong đất yếu S. Vì lúc đầu chưa biết S, do vậy quá trình tính lún là quá trình lặp thử dần theo trình tự sau:

□ Giả thiết độ lún tổng cộng Sgt (thường giả thiết Sgt = 5-10% bề dày đất yếu hoặc chiều sâu vùng đất yếu chịu lún za; nếu là than bùn lún nhiều thì có thể giả thiết Sgt = 20 - 30% bề dầy nói trên);

□ Tính toán phân bố ứng suất theo toán đồ Osterberg với chiều cao nền đắp thiết kế có dự phòng lún H'tk = Htk + Sgt (Htk là chiều cao nền đắp thiết kế: nếu đắp trực tiếp thì kể từ mặt đất thiên nhiên khi chưa đắp đến mép vai đường; nếu có đào bớt đất yếu thì kể từ cao độ mặt đất yếu sau khi đào);

□ Với tải trọng đắp H'tk tính toán độ lún cố kết Sc theo (VI.1) hoặc (VI .1') tùy trường hợp;

□ Nếu Sc tính được thỏa mãn điều kiện (VI.4) tức là thì chấp nhận kết quả và như vậy đồng thời xác định được Sc và S = Sgt; nếu không thỏa mãn điều kiện nói trên thì phải giả thiết lại S và lặp lại quá trình tính toán...

VI.2.4 Chiều cao nền đắp thiết kế có dự phòng lún H'tk được xác định là:

H'tk = Htk + S (VI.5)

Như vậy, cao độ nền đắp trên đất yếu phải thiết kế cao thêm một trị số S để dự phòng lún. Bề rộng nền đắp tại cao độ ứng với chiều cao H'tk phải bằng bề rộng nền đắp thiết kế.




tải về 327.74 Kb.

Chia sẻ với bạn bè của bạn:
1   2   3   4




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương