Eco-friendly synthesis of Cynomorium coccineum extract for controlled production of copper nanoparticles for sorption of methylene blue dye


particular diffusion) and common isotherms equations (Lang-



tải về 1.78 Mb.
Chế độ xem pdf
trang3/9
Chuyển đổi dữ liệu22.10.2023
Kích1.78 Mb.
#55388
1   2   3   4   5   6   7   8   9
Eco-friendly-synthesis-of-Cynomorium-coccineum-extract-for- 2020 Arabian-Jou


particular diffusion) and common isotherms equations (Lang-
muir, Freundlich, Temkin, and Dubinin-Radushkevich). The
corresponding parameters were computed to better understand
the adsorption mechanism.
2. Experimental
2.1. Chemical and reagents
All used chemicals and reagents: copper sulfate (precursor
salt), ethanol, acetone, etc. were of analytical grade. In this
study, methylene blue, supplied from Sigma Aldrich, was used
as adsorbate and representative of cationic dyes. Its molecular
weight was 319.85 g mol
1
. Their physico-chemical character-
istics were summarized in
Table 1
. Distilled water was used to
prepare aqueous solutions and for finishing experiments
(washing and rinsing). The pH was adjusted using 0.1 M
HCl or 0.1 M NaOH solutions.
2.2. Preparation of Cynomorium coccineum aqueous extract
The fractions of Cynomorium coccineum were collected during
the month of March 2019 from Skanes region area (latitude:
35
°75
0
, longitude: 10
°82
0
), Governorate of Monastir, Tunisia.
The collected fractions were thoroughly washed and shade
dried for a weak and ground to fine powdered using an electri-
cal mixer. Grinded dried Cynomorium coccineum fractions
(10 g) were heated in a flask containing 150 mL distilled water
for 90 min at 70
°C. After which, it was cooled to room tem-
perature and then filtrated with a filter paper.
2.3. Bio-synthesis of copper nanoparticles using Cynomorium
coccineum extract
The freshly prepared Cynomorium coccineum extract (100 mL)
was added to 100 mL of 1 M copper sulfate solution. The mix-
ture was constantly stirred at 70
°C for 2 h. The color change
of the solution from blue to dark green indicated the formation
of the copper nanoparticles (
Fig. 1
). Afterward, it was cooled
to room temperature and then filtrated using a filter paper.
Finally, the synthesized nanoparticles were subjected to drying
at 100
°C for a period of 12 h.
4264
N. Sebeia et al.


2.4. Characterization techniques
Fourier Transform Infrared Spectroscopy was used to identify
the functional groups characteristics of the bio-molecules pre-
sent in Cynomorium coccineum extract. The FT-IR spectra were
recorded on a Perkin Elmer model in the 4000–400 cm
1
region
using KBr pellet method. The morphological features of the
samples were evaluated by a SEM Hitachi S-2360N. Samples
were coated with Au by a vacuum sputter-coater with 20 kV
accelerating voltage. EDX measurements were taken on a Phi-
lips FEI Quanta 200 for semi-quantitative analysis of elements.
X-ray powder diffractograms were obtained at room tempera-
ture on a PANalytical X’Pert PRO MPD apparatus. Thermal
analysis (TGA) experiments were performed in the air flow at
a heating rate of 10
°/min in a Pt crucible with NETZSCH
STA 449F3 equipment.
2.5. Bio-sorption batch procedure
The batch sorption experiments were carried out in Erlen-
meyer flasks containing 0.025 g of the prepared copper
nanoparticles and a dye volume of 20 mL. The mixture was
agitated at 125 rpm for different periods of time after the equi-
librium was reached. The effect of initial pH value on the
adsorption of methylene blue was studied in the range 3–10.
The nanoadsorbent dosage was investigated in the range
0.0125–0.1 g. The effect of the change of temperature was
examined at the range 22–55
°C. The absorbance evolution
of the colored solutions was monitored through UV–Vis spec-
trophotometer at a wavelength of 664 nm. The adsorbed
amount of methylene blue was calculated according to the fol-
lowing formula:
q
mg
g


¼
ðc
0
 c
e
Þ
m
 V
ð1Þ
where c
0
and c
e
are the initial and residual dye concentration.
V is the volume of the used adsorbate during the adsorption
experiments and m is the mass of the used adsorbent.
3. Results and discussion
3.1. Copper nanoparticles characterization
Fig. 2
showed the different functional groups characteristics
of Cynomorium coccineum extract and the associated biolog-
ical synthesized copper nanoparticles. In the spectrum of the
Cynomorium coccineum
extract, the bands at 3223, 2882–
2801, 1593, and 1312–1195 cm
1
were attributed to the
O
AH stretching of alcohol and phenol, CAH stretching of
the aliphatic group, C
‚C stretching of the aromatic ring,
and C
AO stretching of ester, respectively (
Subbaiya et al.,
2014; Tahir et al., 2015
). The intense absorption band
observed at 1014 cm
1
could be assigned to C
AOAC
stretching vibration (
Tahir et al., 2015
). The spectrum of
the biosynthesized copper nanoparticles did not change
much compared with the extract and it showed the main
characteristic peaks with band shifting. In fact, the band
observed for hydroxyl groups at 3223 cm
1
in the spectrum
of the studied extract shifted to a lower value (3199 cm
1
) in
the spectrum of the prepared nanoparticles. This shifting, at
this position and the decrease in its intensity, might indicate
that the copper ions interacted with OH groups. This trend
suggested that the prepared particles were surrounded by
different organic bio-molecules. Regarding the spectrum of
methylene blue adsorbed onto the prepared nanoparticles,
such a shift in the band characteristics proved the interac-
tion between the dye molecules and the copper nanoparti-
cles. Overall, the results obtained from the FT-IR spectra
confirmed that the prepared nanoparticles are coated with
bio-molecules that acted as both reducer and coating for
copper nanoparticles against oxidation.
In fact, the formation mechanism of the copper nanoparti-
cles could be explained by the fact that the bio-molecules (i.e.
Flavonoids, phenolics, etc.) present in Cynomorium coccineum
extract can act as ligation agents. The hydroxyl groups of the
bio-molecules form complexing agents with the copper sulfate
as precursor salts and therefore ligate with copper ions. This
starts the nucleation process that goes into reverse micelliza-
tion, which then causes the reduction of the nanoparticles. This
system undergoes decomposition when the particles are dried
at elevated temperatures leading to the easy release of the
CuO nanoparticles from the copper-ellagate complex system
(
Yuvakkumar et al., 2014
). According to literature, the major
constituents of cynomorium plants have been identified to be
Table 1
Physico-chemical characteristics of methylene blue dye.
Name
Chemical structure
k (nm) in water
Molecular weight (g/mol)
Empirical Formula
Methylene blue
664
319.85
C
16
H
18
ClN
3
S

tải về 1.78 Mb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5   6   7   8   9




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương