An Introduction to mems (Micro-electromechanical Systems)



tải về 1.48 Mb.
Chế độ xem pdf
trang57/80
Chuyển đổi dữ liệu01.03.2022
Kích1.48 Mb.
#51121
1   ...   53   54   55   56   57   58   59   60   ...   80
an-introduction-to-mems

An Introduction to MEMS 

 

 



Prime Faraday Technology Watch – January 2002 

38

 

  Chemicapacitors are similar to chemiresistors but the capacitance of the sensitive layer 



is measured.  Chemicapacitors have found application in sensing humidity. 

 



  Chemomechanical sensors rely on direct chemical-to-mechanical transduction (for 

example, the expansion of a thin-film polymer in the presence of a substance being 

analysed). 

 



  Calorimetric sensors measure heat generated by chemical reactions. 

 

 



i)  Work function based sensors 

This class of sensors, including the ion sensitive field effect transistor (ISFET) and the metal 

oxide semiconductor field effect transistor (MOSFET), utilizes metal-insulator-semiconductor 

junctions and the fact that the work function of the material at the interfaces can be 

chemically modulated.  The ISFET was developed as a direct result of  the fact that metal-

oxide-semiconductor transistors were so sensitive to surface contaminants during their 

manufacture.  As a large proportion of chemical sensors are based on the ISFET, a more 

detailed description of their operation is outlined.   

 

ISFETs sense the concentration or activity level of a particular ion in solution.  The ISFET is 



a derivative of a common electronic component called a MOSFET. This consists of a silicon 

semiconductor substrate (doped with impurities to make it p-type) and two electrical contacts 

(source and drain) doped with impurities so that negatively charged electrons are the main 

carriers in these small n-type silicon regions. A small distance separates source from drain 

(Figure 34).  Overlaying the substrate between the source and drain is a silicon dioxide 

insulator which itself is overlaid with a metal electrode called a gate.  When a potential is 

applied to the gate of the MOSFET, the induced electrical field changes the freedom with 

which the current flows between the source and the drain.  In the case of an ISFET however, 

there is no gate electrode and the insulator is in direct contact with an electrolyte solution to 

be measured.  With the ISFET, electric current flows from the source to the drain via a 

channel.  As in the MOSFET the channel resistance depends on the electric field 

perpendicular to the direction of the current.  Also it depends on the potential difference over 

the gate oxide.  Therefore the source-drain current is influenced by the interface potential at 

the oxide/aqueous junction.  When SiO

2

 is used as the insulator, the chemical nature of the 



interface oxide is reflected in the measured source-drain current.  With the selection of other 

appropriate insulator material, such as silicon nitride or aluminium oxide, hydrogen ions will 

reside at the surface of the insulator in proportion to the pH.  Their positive charge produces 

an electric field that modulates the current between the source and drain.  In order to quantify 

this effect, the control voltage is measured that must be applied (via a reference electrode) to 

maintain the drain-source current at a constant value. 

 

The chemical sensitivity of the ISFET is completely controlled by the properties of the 



electrolyte/insulator interface.  One significant problem in the design and fabrication of 

ISFETs is ensuring that the selective membrane adheres to the device.  If the integrity of the 

membrane is compromised, then the device is useless. 




tải về 1.48 Mb.

Chia sẻ với bạn bè của bạn:
1   ...   53   54   55   56   57   58   59   60   ...   80




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương