360R-06 Design of Slabs-on-Ground


DESIGN OF SLABS-ON-GROUND 360R-29



tải về 2.35 Mb.
Chế độ xem pdf
trang43/107
Chuyển đổi dữ liệu11.08.2022
Kích2.35 Mb.
#52863
1   ...   39   40   41   42   43   44   45   46   ...   107
Design of Slabs-on-Ground

DESIGN OF SLABS-ON-GROUND 360R-29
interruption-free floor surface. Installing the joint filler flush
with the top of the slab can best be achieved by overfilling the
joint and shaving the top of the filler level with the slab surface
after the material has hardened.
CHAPTER 6—DESIGN OF UNREINFORCED 
CONCRETE SLABS
6.1—Introduction
The thickness of unreinforced concrete slabs is determined
as a plain concrete slab without reinforcement. Although the
effects of any welded wire reinforcement, plain or deformed
bars, post tensioning, steel fibers, or any other type of reinforce-
ment are not considered, joints may be reinforced for load
transfer across the joint. The slab is designed to remain
uncracked due to loads applied on the slab surface.
Normally, a safety factor of 1.4 to 2.0 is used relative to the
modulus of rupture.
It is important to note that, as set forth in ACI 318, slabs-
on-ground are not considered structural members unless they
are used to transmit vertical or horizontal loads from other
elements of the building’s structure (
Chapter 11
). Consequently,
cracking, joint instability, and surface character problems
are considered to be serviceability issues and are not relevant
to the general integrity of the building structure.
Concrete floor slabs employing portland cement, regardless
of slump, will begin to experience a reduction in volume as
soon as they are placed. This will continue as long as water,
heat, or both, are being released to the surroundings. More-
over, because the drying-and-cooling rates at the top and
bottom of the slab are dissimilar, the shrinkage will vary with
the depth, causing the as-cast shape to be distorted and
reduced in volume. Resistance to formation of this distorted
shape introduces internal stresses in the concrete that, if
unrelieved, may cause the concrete to crack.
Controlling the effects of drying shrinkage is critical to the
performance of unreinforced concrete slabs. Two principal
objectives of unreinforced slab-on-ground design are to
avoid the formation of (out-of-joint) random cracks and to
maintain adequate joint stability. The slab’s anticipated live
loading will govern its thickness and cross-joint shear
transfer requirements, while shrinkage considerations will
dictate the maximum joint spacing.
Application of present technology permits only a reduction in
cracking and curling due to restrained shrinkage, not their
elimination. ACI 302.1R suggests that cracking in up to 3%
of the slab panels in a normally jointed floor is a realistic
expectation. Refer to ACI 224R for further discussion of
cracking in reinforced and unreinforced concrete slabs.
A jointed, unreinforced slab-on-ground design seeks to
optimize the finished floor’s serviceability by attempting to
influence the shrinkage cracks to develop beneath the sawcut
contraction joints. In industrial construction, this can result in
a floor slab that will be susceptible to relative movement of the
joint edges and joint maintenance problems when exposed to
wheeled traffic. If the designer cannot be sure of positive
long-term shear transfer at the joints through aggregate inter-
lock, then positive load-transfer devices should be used at all
joints subject to wheeled traffic. Refer to 
Section 5.2 
for
additional information.

tải về 2.35 Mb.

Chia sẻ với bạn bè của bạn:
1   ...   39   40   41   42   43   44   45   46   ...   107




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương