Table of contents 1 Why is particle size important?



tải về 7.54 Mb.
Chế độ xem pdf
trang22/33
Chuyển đổi dữ liệu17.09.2022
Kích7.54 Mb.
#53206
1   ...   18   19   20   21   22   23   24   25   ...   33
Particle Guidebook 09-2019

PARTICLE SIZE
Particle size can be determined by measuring the random changes in the 
intensity of light scattered from a suspension or solution. Small particles in 
suspension undergo random thermal motion known as Brownian motion. 
This random motion is measured to calculate particle size using the process 
described below. A top view of the optical setup for particle size measurements in 
the SZ-100 is shown in Figure 24.
DYNAMIC LIGHT
SCATTERING 
TECHNIQUE
PARTICLE SIZE
ZETA POTENTIAL
MOLECULAR
WEIGHT
SZ-100
RANGE IN MICRONS
0.3nm - 8µm
OPTIMAL APPLICATIONS
NANOSUSPENSIONS
AND EMULSIONS UNDER 8µm, 
ZETA POTENTIAL AND
MOLECULAR WEIGHT 
WEIGHT 25kG (55 lbs)
FOOTPRINT 
WIDTH 528mm (21”)
DEPTH 385mm (18”) 
HEIGHT 273mm (11”)
figure 24
|
DYNAMIC LIGHT 
SCATTERING LAYOUT
FOR THE SZ-100
Light from the laser light source illuminates the 
sample in the cell. The scattered light signal is 
collected with one of two detectors, either at a 90 
degree (right angle) or 173 degree (back angle) 
scattering angle. The obtained optical signal shows 
random changes due to the randomly changing 
relative position of the particles. This is shown 
schematically in Figure 25.


The signal can be interpreted using an autocorrelation function. Incoming data 
is processed in real time with a digital signal processing device known as a 
correlator and the autocorrelation function, shown in Figure 26 as a function of 
delay time, Τ, is extracted.
The autocorrelation function from dynamic light scattering in Figure 26 shows a 
sample where all of the particles are the same size, the baseline subtracted auto-
correlation function, C, is simply an exponential decay of the following form:
EQUATION 1

= exp(-2
Γ)
Γ 
is readily derived from experimental data by a curve fit. The diffusion coefficient
is obtained from the relation 
Γ=D
t
q
2
where q is the scattering vector, given by 
q=
(4
πn/λ)
sin
(
θ/2). 
The refractive index of the liquid is n. The wavelength of the 
laser light is 
λ, 
and scattering angle

θ.
Inserting D
t
into the Stokes-Einstein equa-
tion then solves for particle size D
h
is the final step.
EQUATION 2 
D
h
=
k
B

Where: 
D
h
= the hydrodynamic diameter 
D
t
= the translational diffusion coefficient
k
B
= Boltzmann’s constant
T = temperature
η = dynamic viscosity
figure 25 
|

tải về 7.54 Mb.

Chia sẻ với bạn bè của bạn:
1   ...   18   19   20   21   22   23   24   25   ...   33




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương