Tổng hợp các phương pháp giải toán trên máy tính casio


VI. Phân tích một số ra thừa số nguyên tố



tải về 474.42 Kb.
trang4/9
Chuyển đổi dữ liệu06.06.2018
Kích474.42 Kb.
1   2   3   4   5   6   7   8   9

VI. Phân tích một số ra thừa số nguyên tố:

Giả sử muốn kiểm tra a là số nguyên tố hay không ?


Sử dụng máy 570MS

Cách 1: nhiều người biết nhưng thời gian kiểm tra lâu:


|a| |shift| |sto| |A| {gán a vào biến A trong máy}
|1| |shift| |sto| |B|
B=B+2:A/B
CALC = = = ....
nếu là số nguyên thì B là 1 ước của A
Kiểm tra cho đến khi hạ xuống dưới căn A thì ngưng

{chú ý: với cách này xem A có chia hết cho 2 không?}



Cách 2: ít người biết, thời gian kiểm tra chỉ rút ngắn còn một nửa so với cách 1:
|a| |shift| |sto| |A|
xem A có chia hết cho 2, cho 3 hay không? (chuyện này đơn giản)
lấy A chia cho 3: A/3 =
Ấn tiếp: A/(A/Ans+2)
Sau đó ấn = = = ... để kiểm tra, khi số trên màn hình hạ xuống dưới căn A thì ngưng.
VII. Tìm chu kì của phép chia có dư:
(daisunhantan)
Thí dụ
Ta nói phép chia có chu kì là . Nhận xét rằng, với phép chia trên, chu kì có thể dễ dàng tìm ra bằng mtbt. Tuy nhiên với những số lớn ví dụ ; việc tìm ra chu kỳ khó khăn hơn nhiều. Phương pháp chung, có lẽ ai cũng biết, là bấm 1*(10^8)/57 để tìm chu kì( là phần nguyên), rồi lấy 1*10^8-phần nguyên vừa tìm được*57; lấy kết quả đó thế vào số 1.... cứ thế ta sẽ tìm ra chi kỳ.
Tuy nhiên cứ tìm 1 lượt như vậy phải bấm ko dưới 20 phím, để tiết kiệm sức, mình xin nêu 1 cách bấm, sau 1 giải thuật ban đầu, cứ bấm 2 dấu = ta sẽ tìm được khoảng 8 số trong chu kỳ.
cách bấm như sau:
A=1
B=57
(((A*10^8)/B)+9.5)*10^-11+1-1)*10^11-10{ĐỌC CHU KÌ}:A=A*10^8-ANS*B

(littlestar_monica)


C2:
nhấn MODE MODE 3 (BASE), rồi nhấn fím x^2( chữ DEC màu xanh đó)
Chẳng hạn như tìm chu kì của
1 |shift| |sto| |A|
(chỉ 7 số 0 thôi)
Ax10000000-49 x |ans| |shift| |sto| |A|
ấn dấu mũi tên lên rồi nhấn |shift| |copy|
chỉ việc nhấn = = =... là ra chu kì của fép chia
ĐS: )
Lưu ý: cứ mỗi phép chia luôn cho ta 7 chữ số thập fân, nếu chỉ hiện 6 hay 5 chữ số, ta hiểu ngầm có 1 hay 2 chữ số 0 ở trước!!!!!
VIII. Tìm n chữ số tận cùng của một luỹ thừa:
Để tìm n chữ số tận cùng của 1 luỹ thừa , ta tìm dư của luỹ thừa đó với 10^n
Heheh , có phải rất hay không nào .
Tuy nhiên . Nếu người ta kiu tìm từ 1 đến 3 chữ số tận cùng của một luỹ thừa mà ta làm theo bài học trên thì thật là , quá oải . Chính vì thế , tui xin post một bài như sau :
_ Tìm 1 chữ số tận cùng của :
* Nếu a có chữ số tận cùng là 0 , 1 , 5 hoặc 6 thì lần lượt có chữ số tận cùng là 0 , 1 , 5 hoặc 6 .
* Nếu a có chữ số tận cùng là 2 , 3 hoặc 7 , ta có nhận xét sau với k thuộc tập hợp số tự nhiên khác 0 :
2^4k đồng dư 6 ( mod 10 )
3^4k đồng dư 1 ( mod 10 )
7^4k đồng dư 1 ( mod 10 )
Do đó để tìm 1 chữ số tận cùng của a^n với a có số tận cùng là 2 , 3 , 7 ta lấy n chia cho 4 . Giả sử n = 4k + r với r thuộc { 0 , 1 , 2 , 3 }
Nếu a đồng dư 2 ( mod 10 ) thì a^2 dồng dư 2^n = 2^(4k+r) đồng dư 6.2^r ( mod 10 )
Nếu a đồng dư 3 ( mod 10 ) thì a^n = a^(4k+r) đồng dư a^r ( mod 10 )
_ Tìm 2 chữ số tận cùng của a^n
Ta có nhận xét sau :
2^20 đồng dư 76 ( mod 100 )
3^20 đồng dư 1 ( mod 100 )
6^5 đồng dư 76 ( mod 100 )
7^4 đồng dư 01 ( mod 100 )
Mà 76^n đồng dư 76 ( mod 100 ) với n >= 1
và 5^n đồng dư 25 ( mod 100 ) với n >= 2
Suy ra kết quả sau với k là các số tự nhiên khác 0 :
a^20k đồng dư 00 ( mod 100 ) nếu a đồng dư 0 ( mod 10 )
a^20k đồng dư 01 ( mod 100 ) nếu a đồng dư 1 ; 3 ; 7 ; 9 ( mod 10 )
a^20k đồng dư 25 ( mod 100 ) nếu a đồng dư 5 ( mod 10 )
a^20k đồng dư 76 ( mod 100 ) nếu a đồng dư 2 ; 4 ; 6 ; 8 ( mod 10 )
Vậy túm lại , để tìm 2 chữ số tận cùng của a^n ta lấy số mũ 2 chia cho 20
_ Ta có :
a^100k đồng dư 000 ( mod 10^3 ) nếu a đồng dư 0 ( mod 10 )
a^100k đồng dư 001 ( mod 10^3 ) nếu a đồng dư 1 ; 3 ; 7 ; 9 ( mod 10 )
a^100k đồng dư 625 ( mod 10^3 ) nếu a đồng dư 5 ( mod 10 )
a^100k đồng dư 376 ( mod 10^3 ) nếu a đồng dư 2 ; 4 ; 6 ; 8 ( mod 10 )
Túm lại , để tìm 3 chữ số tận cùng của 1 luỹ thừa , ta tìm 2 chữ số tận cùng của số mũ .
Nhưng dù sao đi chăng nữa thì cái nguyên tắc


1   2   3   4   5   6   7   8   9


Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2019
được sử dụng cho việc quản lý

    Quê hương