TIÊu chuẩn quốc gia tcvn 7303-2-33: 2010 iec 60601-2-33: 2008


Hình BB.6 - Giá trị ngưỡng dB/dt đối với hai dạng sóng gradient, được vẽ theo thời gian kích thích hiệu quả



tải về 2.37 Mb.
trang18/19
Chuyển đổi dữ liệu08.06.2018
Kích2.37 Mb.
1   ...   11   12   13   14   15   16   17   18   19

Hình BB.6 - Giá trị ngưỡng dB/dt đối với hai dạng sóng gradient, được vẽ theo thời gian kích thích hiệu quả

CHÚ THÍCH Có cả các dữ liệu thực nghiệm của Budinger [96]. Đường nét liền: từ công thức (19), phối hợp trở kháng ở N = 64.



Hình BB.7 - Giá trị ngưỡng dB/dt đối với dạng sóng gradient hình sin, là hàm của s lượng các nửa chu kỳ trong dạng sóng

Liên quan đến 51.103 Bảo vệ chống năng lượng tần số radio quá mức

Phát nóng là hậu quả chính của phơi nhiễm với các trường từ tần số radio sử dụng trong cộng hưởng từ (thường lớn hơn 1 MHz). Nhiều hiệu ứng sinh học của phơi nhiễm với tần số radio thích hợp với các đáp ứng với phát nóng gây ra do tăng nhiệt độ mô hoặc nhiệt độ cơ thể khoảng 1 °C hoặc lớn hơn, hoặc với các đáp ứng để giảm thiểu tải nhiệt cho mô [98].

Tải nhiệt gây ra bởi tần số radio có thể liên quan trực tiếp đến SAR. Các hệ số quan trọng khác có ảnh hưởng đến đáp ứng của bệnh nhân với tải nhiệt cho trước bao gồm nhiệt độ không khí, độ ẩm tương đối, tốc độ luồng không khí và mức độ cách nhiệt của bệnh nhân. Trong khi các giới hạn SAR cục bộ hoặc SAR toàn bộ cơ thể đôi khi có ích để xác định mức quan tâm thì độ tăng nhiệt là tiêu chí đầu tiên. Đối với nguyên nhân này, tiêu chí độ tăng nhiệt cũng được đưa vào tiêu chuẩn.

Các vùng cục bộ hóa của phát nóng hoặc những “điểm nóng” có thể gây ra độ tăng nhiệt cục bộ. Quan trọng là phải che chắn những bệnh nhân có vật cấy hoặc hình xăm, v.v... mà có thể gây ra việc tăng phát nóng cục bộ [2]. Hấp thụ năng lượng tăng tỷ lệ thuận với bình phương khoảng cách hướng kính từ tâm của cơ thể [99] và độ không đồng nhất về điện của cơ thể thay đổi theo dòng điện và độ hấp thụ năng lượng cục bộ. Các nghiên cứu sử dụng mô hình cầu dự đoán rằng “điểm nóng” trường hợp xấu nhất có thể tạo ra bởi quả cầu có độ dẫn thấp (xương hoặc mỡ) nằm ở mép ngoài của quả cầu có độ dẫn lớn (ví dụ bắp thịt); “điểm nóng” có thể xuất hiện với SAR lên đến 2,5 lần giá trị trung bình cục bộ [100]. Các tính toán dựa trên mô hình toán học không đồng nhất của cơ thể con người [101, 102] gợi ý rằng SAR trong mô cục bộ trong cơ thể có thể đến 5 hoặc thậm chí 8 lần lớn hơn trên các thể tích nhỏ so với giá trị trung bình trong toàn bộ cơ thể [103]. Tuy nhiên, những giá trị tăng tương đối này được giảm đi một hệ số khoảng 2 đến 4 khi được lấy trung bình trên các bộ phận cơ thể riêng rẽ [103, 104]. Xác suất SAR trong mô cục bộ cao được giảm xuống do kích thích toàn phương, và ảnh hưởng của chúng được làm dịu đi bởi sự lan truyền nhiệt và sự lưu thông của máu.

Các hiệu ứng nhiệt xuất hiện vi tính nhạy nhiệt độ của hầu hết các quá trình sinh lý. Quan tâm đầu tiên liên quan đến phơi nhiễm tần số radio là để tránh các đáp ứng sinh lý quá mức với độ tăng nhiệt độ trong cơ thể và tránh tăng nhiệt độ của mô đến mức có thể phải chịu một số mức độ nguy hại [1].

Các đáp ứng nhạy của con người với sự phát nóng trong toàn bộ cơ thể bởi tần số radio có thể là những đáp ứng liên quan đến điều chỉnh nhiệt và kể cả tăng nhịp tim và lưu thông máu dưới da cùng với giảm nhẹ áp suất máu trong động mạch [105]. Đáp ứng này trở nên lớn nhất ngay cả khi vật thể nằm thụ động trong nhiệt độ môi trường, khi độ tăng nhiệt của cơ thể lớn hơn khoảng 2 °C. Ảnh hưởng bất lợi đến sức khỏe là không mong muốn trong con người có cơ chế điều tiết nhiệt không hoạt động tốt và các chức năng tim mạch nếu việc tăng nhiệt độ trong cơ thể không lớn hơn 1 °C [106]; Dưới đây đưa ra một số ngoại lệ cụ thể.

Sức khỏe của một số bệnh nhân có thể bị ảnh hưởng trong các điều kiện này. Mối tương quan giữa sinh lý và cơ thể mà liên quan đến khả năng thích nghi với tải nhiệt tăng bao gồm, tuổi già, béo phì và tăng huyết áp [107]. Nhiều thuốc khác nhau như thuốc lợi tiểu, thuốc an thần, thuốc giảm đau, thuốc gây giãn mạch và các thuốc khác làm giảm sự chịu đựng nhiệt [108]. Ngoài ra, khả năng điều chỉnh nhiệt của trẻ con chưa phát triển tốt; người mẹ mang thai cũng có thể bị ảnh hưởng đến khả năng tiêu tán nhiệt. Trong trường hợp này, cần lưu ý rằng sự mất nhiệt từ bào thai qua nhau thai có thể nhỏ hơn nhiều so với sự tiêu tán nhiệt trong các mô tim mạch khác. Nhiệt độ cơ thể nâng lên được biết là sẽ gây quái thai cho một số loài động vật có vú kể cả động vật linh trưởng, và liên quan đến cả hệ thống thần kinh trung ương và khuyết tật trên mặt ở trẻ có mẹ bị chứng thân nhiệt tăng cao rõ rệt kéo dài (>39 °C), đặc biệt trong ba tháng đầu của thai kỳ [109, 110]. Trong các trường hợp này, cần giới hạn độ tăng nhiệt trong cơ thể thấp hơn 0,5 °C [106].

Giới hạn trên SAR toàn bộ cơ thể được trình bày trong 51.103. Giới hạn 2,0 W/kg đối với chế độ vận hành bình thường được khuyến cáo là giá trị SAR toàn bộ cơ thể cao nhất mà tất cả mọi người, không kể tình trạng sức khỏe cần có khả năng chịu được. Con người có khả năng điều chỉnh nhiệt và hệ thống tim mạch hoạt động tốt cần chịu được các giá trị SAR toàn bộ cơ thể cao hơn; Khuyến cáo giới hạn trên là 4 W/kg đối với chế độ vận hành có điều khiển mức một. Tuy nhiên, sự chịu đựng của từng người với nhiệt độ cơ thể nâng cao lại thay đổi rất nhiều; do đó, ngay cả với những người khỏe mạnh cũng yêu cầu phải có giám sát y tế [117].

Giới hạn trên đây được xây dựng với giả thiết nhiệt độ trong phòng khám MR nhỏ hơn 24 °C, độ ẩm tương đối nhỏ hơn 60 % và lưu thông không khí là rất nhỏ; ngoài ra, giả thiết bệnh nhân được mặc quần áo nhẹ. Các tính toán của Adair và Berglund [118, 119] có thể được sử dụng để rút ra các hệ số hiệu chỉnh đối với môi trường để hạn chế tổn thất nhiệt. Có thể ước lượng rằng đối với mỗi °C nhiệt độ môi trường cao hơn 24 °C, SAR toàn bộ cơ thể cần được giảm đi 0,25 W/kg. Tương tự đối với mỗi 10 % độ ẩm môi trường cao hơn 60 %, các giới hạn cần được giảm đi 0,1 W/kg. Các ảnh hưởng này được tính đến trong tiêu chuẩn này bằng yêu cầu giảm các giới hạn SAR ở nhiệt độ và độ ẩm cao. Tuy nhiên, đáp ứng của từng người lại có thể thay đổi; do đó cần chú ý ở mức độ giám sát thích hợp khi sử dụng các hệ số hiệu chỉnh này.

Một số vùng trên cơ thể, ví dụ như đầu, đặc biệt có thể bị ảnh hưởng bởi nhiệt độ nâng cao. Thai nhi đang phát triển cần được coi là đặc biệt nhạy cảm với nhiệt độ nâng cao; tuy nhiên, các mô trong thân người và tứ chi được coi là ít nhạy cảm hơn. Czerski và Athey [120] đề xuất rằng nhiệt độ cục bộ khoảng 38 °C trong đầu, 39 °C trong thân người và 40 °C trong tứ chi thì ít có khả năng sinh ra các ảnh hưởng bất lợi. Tính toán đơn giản [121] thể hiện mối quan hệ giữa phát nhiệt cục bộ trong mắt với SAR trong đầu gợi ý rằng phơi nhiễm gây ra 3 W/kg cho đầu thì ít có khả năng làm tăng nhiệt độ của mắt quá 1,6 °C; nhiệt độ của não cũng ít có khả năng tăng quá 1 °C trong các điều kiện này. Trong các phép đo thực nghiệm trên cừu cạo trụi lông, [122], một số động vật chịu quá trình khám cộng hưởng từ qua đầu 4 W/kg trong thời gian từ 60 min đến 90 min trong khi đo nhiệt độ của mô sâu và mô ngoại vi gồm giác mạc, dịch thủy tinh, da đầu, lưỡi, tĩnh mạch cổ và trực tràng.

Trong thực nghiệm khác, đo được các giá trị nhiệt độ tương tự trong sáu động vật chịu SAR toàn bộ cơ thể là 1,5, 2 hoặc 4 W/kg. Trong các thí nghiệm khám cộng hưởng từ qua đầu, nhiệt độ của da và mắt tăng xấp xỉ 1,5 °C. Nhiệt độ của tĩnh mạch cổ (nhiệt độ não) tăng 0,46 °C ± 0,05 °C sau 60 min đến 90 min khám cộng hưởng từ. Trong các lần khám cộng hưởng từ toàn bộ cơ thể, nhiệt độ trực tràng và tĩnh mạch cổ tăng khoảng 1 °C so với nhiệt độ trước phơi nhiễm trong khi nhiệt độ của da bụng tăng 7 °C. Dựa vào các mô hình và dữ liệu trên động vật, các mức SAR qua đầu (lấy trung bình cho toàn bộ đầu) đến 3,2 W/kg được coi là thấp hơn mức quan tâm. Giới hạn SAR qua đầu 3,2 W/kg, là giới hạn cần thiết để hạn chế độ tăng nhiệt trong mắt ở 1 °C, được sử dụng ở Mỹ trong hàng chục năm nay mà chưa có những báo cáo phản đối. Ngoài ra, các giới hạn SAR cục bộ khác được thực hiện phù hợp với ICNIRP.

Độ tăng nhiệt trong đối tượng bất kỳ mà xuất hiện khi đáp ứng với sự hấp thụ không liên tục năng lượng tần số radio từ ví dụ nguồn tần số radio dạng xung, có thể tương đương với giá trị SAR lấy trung bình trong 50 % thời gian cân bằng nhiệt, là thời gian được lấy để độ tăng nhiệt tại tâm của vùng phát nóng bằng 50 % giá trị lớn nhất sau khi đặt nguồn nhiệt. Thời gian cân bằng nhiệt đối với cơ thể là chưa biết chính xác nhưng có thể ước lượng vào khoảng 15 min đến 30 min trong đó các mô có khối lượng nhỏ hơn như mắt, có thời gian cân bằng nhiệt khoảng 5 min [123]. Tiêu chuẩn này sử dụng giá trị 6 min làm thời gian lấy trung bình để xác định SAR đối với tất cả các mô và đối với cơ thể.

Cuộn chênh từ sóng radio (RF) có thể tách thành hai loại: cuộn chênh từ sóng radio (RF) trong không gian và cuộn chênh từ sóng radio (RF) cục bộ. Thành phần phổ biến của loại cuộn chênh từ sóng radio (RF) trong không gian là thiết bị cộng hưởng cơ thể và cuộn dây qua đầu. Cuộn chênh từ sóng radio (RF) cục bộ thường được sử dụng liên quan đến ứng dụng X quang.

Sự phân chia thành hai loại được đưa ra để đơn giản hóa nhưng, trên quan điểm an toàn, vẫn đáp ứng đầy đủ các quy tắc điều khiển SAR.

Đối với cuộn chênh từ sóng radio (RF) trong không gian, điều khiển các khía cạnh SAR toàn bộ cơ thể và SAR một phần cơ thể (kể cả SAR qua đầu) là đủ trong khi đó đối với cuộn chênh từ sóng radio (RF) cục bộ thì cần điều khiển khía cạnh SAR toàn bộ cơ thể và SAR cục bộ.

Điều khiển đồng thời SAR toàn bộ cơ thể cùng với SAR một phần cơ thể hoặc với SAR cục bộ là cần thiết đề đáp ứng sự thay đổi trong phạm vi rộng của các trường hợp phơi nhiễm khi được đưa ra bởi khả năng thay đổi của cuộn dây, kích thước bệnh nhân và vị trí tương đối của chúng. Yêu cầu này tự động điều chỉnh việc giám sát SAR thành khía cạnh SAR nghiêm trọng nhất. Điều này được minh họa trong bốn ví dụ sau:

Ví dụ 1: Khám người trưởng thành bằng cuộn chênh từ sóng radio (RF) qua đầu rõ ràng là phơi nhiễm một phần cơ thể (chủ yếu là đầu). Trong trường hợp này, SAR một phần cơ thể sẽ giới hạn lượng truyền công suất RF. Tuy nhiên, khám trẻ nhỏ cũng với cuộn chênh từ sóng radio (RF) qua đầu đó thì lại phải đánh giá dưới dạng phơi nhiễm toàn bộ cơ thể (nếu trẻ em nằm vừa hoàn toàn bên trong cuộn dây). Trong trường hợp này, SAR toàn bộ cơ thể sẽ là yếu tố giới hạn.

Ví dụ 2: Khám đầu trẻ em trong thiết bị cộng hưởng cơ thể có kích cỡ tương đối lớn có thể gây ra giá trị SAR toàn bộ cơ thể nghiêm trọng hơn giá trị SAR một phần cơ thể.

Ví dụ 3: Khám người trưởng thành có kích cỡ lớn bằng thiết bị cộng hưởng cơ thể tương đối ngắn có nghĩa là phơi nhiễm một phần cơ thể lớn hơn phơi nhiễm toàn bộ cơ thể. Trong trường hợp này, SAR của phơi nhiễm một phần cơ thể phải được giới hạn ở mức an toàn.

Ví dụ 4: Khám người trưởng thành bằng cuộn chênh từ sóng radio (RF) cục bộ hiển nhiên đòi hỏi điều khiển SAR cục bộ. Tuy nhiên, trong trường hợp trẻ em và cuộn chênh từ sóng radio (RF) cục bộ tương đối lớn thì SAR toàn bộ cơ thể có thể trở thành yếu tố nghiêm trọng nhất.

Giới hạn SAR qua đầu, SAR toàn bộ cơ thể và SAR cục bộ được đánh giá bằng một số nguồn dữ liệu thực nghiệm và mô hình lý thuyết trong quá khứ. Tuy nhiên, đơn giản hóa việc điều khiển SAR liên quan đến kiểu không gian của cuộn chênh từ sóng radio (RF) yêu cầu phải đưa ra giới hạn SAR một phần cơ thể liên quan đến phần cơ thể bị phơi nhiễm (xem ví dụ 3). Giới hạn này được chọn để thay đổi với tỷ số:

(Khối lượng của phần cơ thể phơi nhiễm) / (tổng khối lượng của bệnh nhân)

Xem xét dưới đây đã dẫn đến quy định này. Nếu bệnh nhân nằm hoàn toàn trong cuộn chênh từ sóng radio (RF) thì khối lượng phơi nhiễm bằng tổng khối lượng của bệnh nhân, và do đó giới hạn liên quan đến phơi nhiễm một phần cơ thể phải đồng nhất với giới hạn SAR toàn bộ cơ thể. Sự phụ thuộc tuyến tính trên tỷ số khối lượng đề cập ở trên coi là được đánh giá để áp dụng. Hình BB.8 thể hiện minh họa bằng hình vẽ điều này.



CHÚ THÍCH Để xác định phân bố công suất sóng radio (RF)hấp thụ và để xác định khối lượng phần cơ thể phơi nhiễm, hình dạng bệnh nhân phải được mô hình hóa dựa trên các dữ liệu đăng ký của bệnh nhân (ví dụ sử dụng các hình trụ đơn giản mô phỏng đầu, thân mình và tứ chi). Đối với dữ liệu thống kê của các phép đo chuẩn trong quá trình xây dựng, cho phép sử dụng các nguồn dữ liệu về nhân trắc học, ví dụ những tài liệu được công bố bởi Trung tâm quốc gia Hoa kỳ về thống kê sức khỏe (NCHS).



: data -> 2017
2017 -> Tcvn 6147-3: 2003 iso 2507-3: 1995
2017 -> Các Cục Hải quan tỉnh, thành phố
2017 -> TIÊu chuẩn quốc gia tcvn 10256: 2013 iso 690: 2010
2017 -> Căn cứ Nghị định số 15/2017/NĐ-cp ngày 17/02/2017 của Chính phủ quy định chức năng, nhiệm vụ, quyền hạn và cơ cấu tổ chức của Bộ Nông nghiệp và Phát triển nông thôn
2017 -> TIÊu chuẩn quốc gia tcvn 8400-3: 2010
2017 -> TIÊu chuẩn nhà NƯỚc tcvn 3133 – 79
2017 -> Căn cứ Luật Tổ chức chính quyền địa phương ngày 19 tháng 6 năm 2015
2017 -> Căn cứ Nghị định số 15/2017/NĐ-cp ngày 17 tháng 02 năm 2017 của Chính phủ quy định chức năng, nhiệm vụ, quyền hạn và cơ cấu tổ chức của Bộ Nông nghiệp và Phát triển nông thôn
2017 -> Btvqh10 ngày 25 tháng 5 năm 2002 của Ủy ban Thường vụ Quốc hội về tự vệ trong nhập khẩu hàng hóa nước ngoài vào Việt Nam


1   ...   11   12   13   14   15   16   17   18   19


Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2019
được sử dụng cho việc quản lý

    Quê hương