TIÊu chuẩn quốc gia tcvn 7303-2-33: 2010 iec 60601-2-33: 2008


Hình BB.3 - Vẽ trên thang loga các giá trị ngưỡng thực nghiệm đối với kích thích thần kinh ngoại vi



tải về 2.37 Mb.
trang16/19
Chuyển đổi dữ liệu08.06.2018
Kích2.37 Mb.
#39695
1   ...   11   12   13   14   15   16   17   18   19

Hình BB.3 - Vẽ trên thang loga các giá trị ngưỡng thực nghiệm đối với kích thích thần kinh ngoại vi

12) Dữ liệu thực nghiệm trên các giá trị ngưỡng PNS tùy thuộc vào hướng của cơ thể bệnh nhân so với hướng gradient đóng cắt

Giá trị ngưỡng dòng điện là hàm của hướng gradient đóng cắt đạt được bằng thực nghiệm trong thiết bị cộng hưởng từ toàn bộ cơ thể. Đối với cuộn gradient HF, nghiên cứu Purdue trên 84 tình nguyện viên ghi được ngưỡng dòng điện là 29,5 T/s và chronaxie là 0,36 ms. Lưu ý rằng trong các thực nghiệm này, một cuộn dây đơn giản mà tái tạo dạng từ trường tại mỗi đầu của cuộn gradient HP thực tế được sử dụng để mô phỏng các hiệu ứng kích thích của đóng cắt gradient HF. Vật thể này được định vị theo chiều dọc đối với ngưỡng PNS nhỏ nhất. Thực nghiệm này cho thấy rằng ngưỡng PNS đối với các hướng gradient HF trong thiết bị cộng hưởng từ như vậy sẽ lớn hơn hướng AP, với tỷ số giữa hướng gradient AP trên HF là 0,66. Giữa gradient LR và AP tồn tại một sự khác nhau tương tự về ngưỡng. Các dữ liệu trên 10 tình nguyện viên của Budinger [96], người đã xem xét các ngưỡng này bằng cách quay cuộn gradient so với tình nguyện viên, cho thấy rằng tỷ số giữa các ngưỡng gradient AP và LR là 0,8. Trên cơ sở các kết quả này, tiêu chuẩn này cho phép các hệ số trọng số để tính toán đầu ra gradient của gradient HF và LR bằng WHF = 0,7 và WLR = 0,8.



13) Kích thích thần kinh trong trường hợp kết hợp các dạng sóng từ hai bộ gradient tr lên

Chuỗi hình ảnh MR luôn chứa sự kết hợp các dạng sóng gradient từ tất cả ba bộ gradient.

Kích thích mạnh nhất sẽ xuất hiện khi tất cả các cuộn dây được hoạt động đồng thời với các dạng sóng đồng nhất ở đầu ra gradient lớn nhất. Tại mỗi thời điểm trong không gian xung quanh tâm nam châm, giá trị của tốc độ thay đổi tổng (dB/dt)tổng sẽ là tổng vecto của các phân bố (dB/dt)i từ từng bộ gradient i. Lưu ý rằng trường điện cảm ứng, được coi là cơ chế kích thích, sẽ tương tự nhau do sự bổ sung vecto của trường điện E xuất phát từ từng gradient đóng cắt. Giá trị (dB/dt)tổng sẽ là hàm của không gian theo cách để phụ thuộc mạnh vào octant như định nghĩa bởi hệ thống tọa độ gradient. Các giá trị lớn nhất sẽ xuất hiện trong các octant mà ở đó hướng của (dB/dt)tổng và của từng (dB/dt)i sẽ nằm ở các góc nhỏ hơn 90°. Điều kiện này sẽ luôn tồn tại ở hai trong số các octant, và trong quá trình kết hợp của các dạng sóng phức hợp mà ở đó các gradient đổi dấu, điều kiện trường hợp xấu nhất này sẽ chuyển đến các octant khác. Trong octant trường hợp xấu nhất, giá trị lớn nhất trong không gian của (dB/dt)tổng nhỏ hơn tổng các giá trị lớn nhất trong không gian của các (dB/dt)i, vì các giá trị lớn nhất trong không gian của các (dB/dt)i không xuất hiện tại cùng một điểm. Hơn nữa, ngay cả trong octant đó, hướng vecto của (dB/dt)i tại vị trí (dB/dt)tổng lớn nhất sẽ không hoàn toàn song song.

Do đó, trong trường hợp đang xét, (tất cả các cuộn dây hoạt động đồng thời với các dạng sóng đồng nhất ở giá trị dB/dt lớn nhất) các ảnh hưởng chung lên kích thích sẽ nhỏ hơn tổng tuyến tính của các ảnh hưởng của từng cuộn dây.

Tiêu chuẩn này giả thiết rằng ảnh hưởng của các gradient đóng cắt đồng thời có thể được đại diện bởi tổng toàn phương có trọng số các (dB/dt)i của từng bộ gradient. Hệ số trọng số được nêu trong Điểm 12.

Khi thời gian kích thích ts của ba gradient tại giá trị truyền lớn nhất không giống nhau, phép cộng toàn phương vẫn có ý nghĩa, nhưng giới hạn chung phải được thay bằng các giới hạn riêng đối với từng thời gian kích thích ts.

Trong thiết bị cộng hưởng từ, chuỗi các dạng sóng đồng thời ở giá trị biên độ lớn nhất của từng gradient, vì vậy giả thiết về sự xuất hiện là một giả thiết thận trọng. Các ước lượng thực tế của ngưỡng đối với các dạng sóng đồng thời một phần từ các cuộn dây khác nhau có thể có được bằng các mô hình chính xác hơn và có tính đến hình dạng của từng dạng sóng. Ví dụ về mô hình này được mô tả trong Điểm 16.

14) Giới hạn PNS đối với hệ thống chênh từ toàn thân

Như nêu trong Điểm 4, giới hạn của chế độ vận hành có điều khiển mức một là đầu ra gradient mà đưa ra ngưỡng PNS. Định nghĩa sinh lý này có thể được nêu lại một cách định lượng: đối với hệ thống chênh từ toàn bộ cơ thể, giới hạn này dựa trên các giá trị ngưỡng tìm thấy đối với đóng cắt các gradient AP trong Điểm 10.

Đây là giới hạn liên quan đến đầu ra gradient lớn nhất của hệ thống chênh từ với dạng sóng cho trước.

- Đầu ra gradient lớn nhất của thiết bị cộng hưởng từ được giả thiết là gây ra bởi đầu ra đồng thời của tất cả các bộ gradient, mỗi bộ ở giá trị tốc độ lớn nhất và ở biên độ gradient lớn nhất. Nó được đo là một giá trị mô đun lớn nhất trong không gian xuất hiện trong thể tích phù hợp.

- Thể tích phù hợp được định nghĩa trong tiêu chuẩn. Các kích thước của không gian được giả thiết là không nằm trong vùng mà bình thường không có các bộ phận cơ thể có đường kính lớn của bệnh nhân, và không gian này có thể nhỏ hơn không gian thực tế mà bệnh nhân tiếp cận.

- Sự phụ thuộc gồm hiệu chỉnh thời gian kích thích đối với các ngưỡng giữa hình sin và hình thang

- Đầu ra đồng thời được rút ra từ việc xem xét khám đầu ra gradient của các bộ gradient riêng rẽ, sử dụng các tỷ số ngưỡng phụ thuộc vào hướng đặt wi từ điểm 12 và luật tổng toàn phương của Điểm 13.

Điều này sinh ra



các giá trị dB/dt có thể đạt được bằng cách tính toán hoặc thử nghiệm. Các tính toán có thể thực hiện từ hình dạng hình học của cuộn dây và phân bố dòng điện bằng cách sử dụng định luật Biot-Savart:



trong đó dl’ là phần tử dây quấn của cuộn dây ở vị trí r’.



15) Giới hạn đối với PNS dựa trên tính toán trường từ

Đối với các hệ thống chênh từ khác về kích thước so với hệ thống chênh từ toàn thân, thông tin từ công việc thực nghiệm liên quan giữa đầu ra gradient với ngưỡng PNS trong hệ thống gradient toàn bộ cơ thể không áp dụng trực tiếp được. Điều này là do mối quan hệ này phụ thuộc vào hình dạng hình học của cuộn dây và bệnh nhân. Ví dụ nếu hệ thống chênh từ chỉ phơi nhiễm đầu có bán kính 0,1 m thì các giới hạn đầu ra gradient từ Điểm 8 có thể quá khắc nghiệt bởi hệ số 2 (xem điểm (4a)). Đối với các loại hệ thống chênh từ khác nhau trong thiết bị cộng hưởng từ mục đích đặc biệt (ví dụ thiết bị cộng hưởng từ đặc biệt dùng cho ngực, tứ chi hoặc đầu) hoặc các thiết kế thiết bị gradient đặc biệt để dùng trong thiết bị cộng hưởng từ toàn bộ cơ thể (ví dụ như các hệ thống chênh từ dùng để soi kính hiển vi, tim và đầu), tiêu chuẩn này cho phép sử dụng các giới hạn đối với trường điện E cảm ứng bởi đóng cắt gradient. Yếu tố cơ bản là vì E là đại lượng liên quan trực tiếp với mô hình sinh lý được mô tả trong Điểm 3.

Mặc dù giá trị E trong cuộn dây cho trước và hình dạng hình học của bệnh nhân không dễ đo được nhưng các tính toán vẫn có thể thực hiện từ hình dạng hình học của cuộn dây và phân bố dòng điện khi bỏ qua ảnh hưởng của dòng điện cảm ứng trong bệnh nhân. Trường điện trong bệnh nhân do các gradient đóng cắt có thể được biểu diễn như sau:

E = –A/ t –  (BB 13)



trong đó A là điện thế của vecto từ do dòng diện trong các cuộn dây gradient. Vi phân theo thời gian A/ t được tính từ

trong đó:



İ là tốc độ thay đổi dòng điện trong cuộn dây và

dl’ là phần tử dây quấn của cuộn dây tại vị trí r’.

Điện thế tĩnh điện  là do các điện tích tại các giao diện giữa các mặt phẳng không liên tục về độ dẫn điện (ví dụ như giao diện không khí-bệnh nhân) và do sự bảo toàn điện tích.

Điện thế tĩnh điện nhìn chung cần được tính bằng kỹ thuật máy tính. Trường hợp đặc biệt đáng chú ý trong đó  bằng không đối với gradient z đối xứng hình trụ đặc đọc theo trục của trụ dẫn. Trong trường hợp này, E = –A/ t. Công thức (BB 14) có hiệu lực đối với mô hình bệnh nhân phức tạp. Sự đơn giản hóa có ích nhằm xấp xỉ các phần của cơ thể thành các trụ hoặc cầu có độ dẫn đồng nhất.

Trong tiêu chuẩn này, ngưỡng đối với E được giả thiết là có dạng hypecbon của hàm ngưỡng trong công thức (BB 6), với chronaxie là 0,36 ms như đã thảo luận trong Điểm 10 và với ngưỡng dòng điện dựa trên các giá trị liên quan đến hướng đối với dB/dt và các kết quả tính toán của Purdue đối với tỷ số giữa E và dB/dt (xem điểm 4). Cần nhấn mạnh rằng trường điện được tính toán với giả thiết độ dẫn là đồng nhất trong toàn bộ cơ thể bệnh nhân. Truờng điện ngưỡng đạt được như vậy là 2,16 V/m đối với đóng cắt gradient AP và 2,4 V/m đối với gradient HF. Sự khác nhau giữa hai giá trị này không đáng kể và do đó 2,2 V/m là một ước lượng tốt đối với ngưỡng trường điện đối với PNS bởi một chuỗi xung hình thang cho tất cả các hướng gradient. Tương tự với luận cứ đối với các giới hạn dB/dt, giới hạn của E trong chế độ vận hành có điều khiển mức một bằng giá trị ngưỡng của E. Đối với chế độ vận hành bình thường, giới hạn được giảm đi một hệ số là 0,8. Giới hạn đối với E có hiệu lực đối với tất cả các kiểu thiết bị cộng hưởng từ. Giá trị của E là giá trị lớn nhất xuất hiện trong không gian phù hợp đối với đầu ra gradient cho trước. Phát biểu này tương tự với phát biểu trong Điểm 14, nhưng

- không gian phù hợp là toàn bộ không gian mà bệnh nhân có thể tiếp cận;

- đầu ra đồng thời của các bộ gradient có thể lấy từ quy tắc tổng bình phương của Điểm 13, nhưng không cho phép sử dụng hệ số trọng số phụ thuộc hướng. Ví dụ, đối với các dạng sóng EPI có thời gian kích thích điều này dẫn đến





16) Mô hình các giá trị ngưỡng của PNS đối với các dạng sóng phức hợp

Hàm ngưỡng hypecbon tương tự với công thức (BB 6) và có ngưỡng dòng điện và chronaxie được xác định trong Điểm 10 có hiệu lực đối với các kích thích chữ nhật lượng cực lặp (và đối với hình sin, sử dụng thời gian kích thích hiệu quả xác định trong công thức (BB 11)). Để giải quyết các dạng sóng gradient phức hợp, ví dụ thường được sử dụng trong vẽ hình ảnh MR, có thể mở rộng hơn vì đối với các dạng sóng như vậy, ngưỡng có thể cao hơn. Hàm ngưỡng phổ biến hơn có thể tìm thấy bằng cách xem xét kích thích B(t) thuộc dạng sóng này là một chuỗi các hàm Dirac mà gây ra đáp ứng thần kinh cần thiết lặp để thực sự đạt đến ngưỡng [97]. Từ công thức (BB 6) có thể biểu diễn Rrect, đáp ứng với ngưỡng đối với các kích thích chữ nhật đơn giản có thời gian kích thích ts



Rrect có thể được coi là hàm của ts. Vi phân theo ts



Công thức (BB 17) mô tả sự góp phần vào giá trị đáp ứng ở t = ts của việc cộng có dạng Dirac vào kích thích tại t = 0 với giá trị B. Đối với trường hợp phổ biến hơn, việc tăng giá trị đáp ứng R(t) ở thời điểm t từ các kích thích dạng Dirac ở thời điểm  với cường độ B()



Giá trị tổng của đáp ứng của thần kinh R(t) ở thời điểm bất kỳ đối với kích thích bất kỳ B() đối với 0 <  < T đạt được bởi



Hình BB.4 thể hiện R(t) đối với các kích thích chữ nhật đơn giản. Kích thích sẽ xuất hiện khi độ lớn dB/dtmax của kích thích làm cho giá trị lớn nhất theo thời gian R(t) lớn hơn 1.

Ví dụ, đối với dạng sóng hình ảnh vọng hai chiều (EPI), kích thích phức hợp là chuỗi các kích thích chữ nhật có dấu thay đổi trong đó kích thích đầu tiên trong chuỗi có một nửa thời gian của các kích thích khác. Các đỉnh bằng phẳng của dạng sóng gradient tương ứng với các khoảng thời gian giữa các kích thích. Kết quả của tích phân trong công thức (BB 18) trong trường hợp này được thể hiện ở dạng đồ họa đối với PNS trên Hình BB.5. Giá trị lớn nhất của R(t) đạt được tại thời điểm kết thúc kích thích thời gian đầy đủ đầu tiên. Các hình vẽ gợi ý rằng có thể sử dụng mô hình để rút ra các điều kiện ngưỡng đối với dạng sóng bất kỳ, cho trước ngưỡng đối với dạng sóng đơn giản.

Các dự đoán của mô hình được so sánh với thực nghiệm trong Hình BB.6 và BB.7. Hình BB.6 thể hiện các ngưỡng đối với dạng sóng hình thang của nghiên cứu Purdue (xem chi tiết trong điểm 10). Công thức (BB 19) đã được sử dụng để tìm hàm ngưỡng bằng cách đưa dạng sóng hình thang thực nghiệm vào B(). Ngưỡng dòng điện rb và chronaxie tc (công thức (BB 19)) được điều chỉnh để phù hợp nhất. Có thể thấy rằng các giá trị đạt được không bằng với ngưỡng dòng điện và chronaxie tìm thấy cho tập dữ liệu giống nhau trong điểm 10. Điều này gây ra do sự khác nhau trong việc xác định chúng: trong công thức (BB 19), rb và tc được xác định cho các kích thích chữ nhật một cực. Ngoài ra, Hình BB.6 thể hiện hàm ngưỡng mà có thể có được từ công thức (BB 19) đối với cùng một ngưỡng dòng điện và chronaxie, nhưng đối với dạng sóng sin, vẽ theo thời gian kích thích hiệu quả như xác định trong công thức (BB 11). Mô hình được thể hiện để hỗ trợ việc sử dụng các cách xác định này một cách hợp lý. Mô hình dự đoán rằng đối với cả hai dạng sóng, ngưỡng sẽ nằm trong phạm vi 10 % trong dải thời gian kích thích hiệu quả lớn. Mặc dù mô hình dự đoán sự giảm mạnh của ngưỡng thực nghiệm giữa thí nghiệm nửa chu kỳ và thí nghiệm hình sin liên tục, nhưng sự thay đổi tinh vi hơn được tìm thấy bằng thực nghiệm đối với các hình sin có thời gian từ 1 đến 10 chu kỳ không được dự đoán. Các mô hình mở rộng hơn là cần thiết [91]. Mô hình SAFE của chúng (xấp xỉ kích thích bằng các lọc và đánh giá) áp dụng cho ba bộ lọc tạm thời để lọc dạng sóng gradient và cộng các đầu ra. Bộ lọc đóng vai trò phát điện thế hoạt động trong các dây thần kinh và lan rộng tín hiệu nhờ các khớp thần kinh. Trong khi mô hình không đòi hỏi mô tả đáp ứng sinh lý, thì nó vẫn dự đoán tất cả các yếu tố phụ thuộc của ngưỡng kích thích trong thời gian kích thích, hình sin theo hình thang và số lượng chu kỳ gradient.



Hình BB.7 thể hiện ngưỡng là hàm của số các nửa chu kỳ của kích thích hình sin. Ngưỡng được vẽ theo tỷ lệ để phù hợp với các dữ liệu thực nghiệm từ Budinger [96].

 ký hiệu của tích hợp. n(t) = tc/rb (tc + t)2



Каталог: data -> 2017
2017 -> Tcvn 6147-3: 2003 iso 2507-3: 1995
2017 -> Các Cục Hải quan tỉnh, thành phố
2017 -> TIÊu chuẩn quốc gia tcvn 10256: 2013 iso 690: 2010
2017 -> Căn cứ Nghị định số 15/2017/NĐ-cp ngày 17/02/2017 của Chính phủ quy định chức năng, nhiệm vụ, quyền hạn và cơ cấu tổ chức của Bộ Nông nghiệp và Phát triển nông thôn
2017 -> TIÊu chuẩn quốc gia tcvn 8400-3: 2010
2017 -> TIÊu chuẩn nhà NƯỚc tcvn 3133 – 79
2017 -> Căn cứ Luật Tổ chức chính quyền địa phương ngày 19 tháng 6 năm 2015
2017 -> Căn cứ Nghị định số 15/2017/NĐ-cp ngày 17 tháng 02 năm 2017 của Chính phủ quy định chức năng, nhiệm vụ, quyền hạn và cơ cấu tổ chức của Bộ Nông nghiệp và Phát triển nông thôn
2017 -> Btvqh10 ngày 25 tháng 5 năm 2002 của Ủy ban Thường vụ Quốc hội về tự vệ trong nhập khẩu hàng hóa nước ngoài vào Việt Nam

tải về 2.37 Mb.

Chia sẻ với bạn bè của bạn:
1   ...   11   12   13   14   15   16   17   18   19




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương