See discussions, stats, and author profiles for this publication at

tải về 434.01 Kb.
Chế độ xem pdf
Chuyển đổi dữ liệu22.09.2022
Kích434.01 Kb.
1   2   3   4   5   6   7   8   9   ...   13
The Effect of Reading Comprehension and Problem So (1)

1.2 Problem Solving Strategies 
According to Polya (1990), reading comprehension process is followed by planning for solution and planning 
implementation steps. According to Altun (2005), during planning stage, students choose strategies for solution and 
during plan implementation stage, they reach to a solution using the strategies they chose. In a study by Sulak (2005), a 
positive relation was found between students’ problem solving success and their rates of using problem solving strategies. 
It was seen in the studies of Altun, Memnun and Yazgan (2007), Altun and Arslan (2006), Özcan (2005) that elementary 
school students can use strategies of estimation and control, systematic listing, drawing figures, simplifying the problem, 
backward-studying and looking for a pattern. Relevant researches reveal that teaching problem solving affects students’ 
both problem solving success and attitudes towards mathematics positively (Yıldızlar, 2001; Gök and Sılay, 2008; Altun, 
1995; Yazgan and Bintaş, 2005). 
It was seen in a study by Ulu (2008) that in Turkey elementary school students generally use mathematical sentence 
writing strategy. Baykul (2005) defines mathematical sentence writing strategy as equations and inequations constructed 
while solving four-operation problems and states that this strategy is implemented by determining the operations for 
solution or by finding the values for the unknown that will confirm equation and inequation. According to Baykul, this 
strategy turns into forming equation during the last years of secondary school and it is emphasized that the strategy is 
abstract in both cases. In a study by Pape (2004) students who write mathematical equation and inequation directly 
without making sense of the problem and without forming a relation between what is given and what is wanted and who 
use the problem text only to determine what calculations are required are defined direct; students who record what is given, 
absorb the text content, check and crosscheck the calculations to put across the solution with its justifications are defined 
comprehension-oriented solvers. At the end of the study the latter was found to be more successful than the former.
It was determined in a study by Koedinger and Tabahneck (1994) that if a student can switch her/his strategy and goes 
for others when s/he reaches deadlock while solving a problem, or reaches a solution by using multiple strategies, s/he 
can deal with dilemmas more easily with less effort. In a study by Kaur (1998), unsuccessful students don’t choose the 
appropriate strategy for solution and cannot implement it even if they choose the right strategy. It was seen in the same 
study that good solvers can solve the same problem with different strategies. 

Journal of Education and Training Studies Vol. 5, No. 6; June 2017 
According to Montague (2005), when students are given strategies and a process to make mathematical problem solving 
less complicated, then they could learn those strategies and become successful problem solvers. Students who have 
experienced little success in mathematics can learn various problem-solving strategies that will help develop 
mathematical skills and build confidence in their own abilities as problem solvers (Pajares,1996).
In the studies by Panasuk and Beyranevand (2010), Moreno and Mayer (1999), Hegarty, Mayer and Mog (1995), Hegarty, 
Mayer and Green (1992). Prakitipong and Nakamura (2006), Wijaya et al. (2014), Kroll and Miller (1993), Tertemiz 
(1994), it was found that good solvers have higher reading comprehension levels than students with low success, but the 
order of importance of sub-variables of reading comprehension skills wasn’t determined. It was determined in the studies 
by Altun ve Memnun (2008), Altun, Memnun ve Yazgan (2007), Altun ve Arslan (2006), Özcan (2005), Ulu (2008), 
Kaur (1998) that students use problem solving strategies informally, but which of these strategies contribute to 
classifying students with high and low prolem solving success wasn’t determined. Only one study was found in the 
literature belonging to Altun and Memnun (2008) discriminating the strategies used by students with high and low 
problem solving success, but this study was conducted on university students, not elementary school students. On the 
other hand, it is stated that determining the implementations of the students during mathematical problem solving prcess 
enables us to get information about their mathematical knowledge and skills (Baki, Karataş and Güven, 2002; Karataş 
and Güven, 2004). It is thought that determining what students with high problem solving success can do better than 
students with low problem solving success will shed a light to the help to be given to students with low problem solving 
success. In this context, in this study, answers were sought for the following questions. 
1. Are reading comprehension skills (reading rate, reading accuracy percentage, prosodic reading, literal 
comprehension, inferential comprehension) effective on classifying students with high and low mathematical 
problem solving success? 
2. What is the relative order of importance of problem solving strategies in classifying students with high and low 
problem solving success?

tải về 434.01 Kb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5   6   7   8   9   ...   13

Cơ sở dữ liệu được bảo vệ bởi bản quyền © 2022
được sử dụng cho việc quản lý

    Quê hương