Luận văn Thạc sỹ 2007 2009



tải về 2.24 Mb.
trang2/2
Chuyển đổi dữ liệu02.06.2018
Kích2.24 Mb.
#39258
1   2

TÀI LIỆU THAM KHẢO


TÀI LIỆU TIẾNG VIỆT

  1. Nguyễn La Anh, Đinh Mỹ Hằng, Vũ Quỳnh Hương, Nguyễn Hương Giang, Nguyễn Thị Lộc (2003), “Đặc điểm chủng vi khuẩn Lactobacillus plantarum có ứng dụng trong công nghệ sản xuất nước CVAS”, Tuyển tập báo cáo tại Hội nghị Công nghệ Sinh học toàn quốc năm 2003, pp. 159-161.

  2. Lê Thanh Bình, Phạm Thị Ngọc Lan, Yoshimi Benno (1999), “Tác dụng tăng trưởng đối với gia cầm của chế phẩm vi sinh vật PRO 99”, Tuyển tập báo cáo tại Hội nghị Công nghệ Sinh học toàn quốc năm 1999, pp. 139-144.

  3. Nguyễn Thị Hồng Hà, Lê Thiên Minh, Nguyễn Thuỳ Châu (2003), “Nghiên cứu công nghệ sản xuất chế phẩm vi khuẩn lactic probiotic”, Tuyển tập báo cáo tại Hội nghị Công nghệ Sinh học toàn quốc năm 2003, pp. 251-255.

  4. Lê Tấn Hưng, Võ Thị Hạnh, Lê Thị Bích Phượng, Trương Thị Hồng Vân., Võ Minh Sơn (2003), “Nghiên cứu sản xuất chế phẩm probiotic BIO II và kết quả thử nghiệm trên ao nuôi tôm”, Tuyển tập báo cáo tại Hội nghị Công nghệ Sinh học toàn quốc năm 2003, pp. 75-79.

  5. Phạm Thị Ngọc Lan, Lê Thanh Bình (2003), “Đặc điểm phân loại chủng Lactobacillus probiotic CH123 và CH 126 phân lập từ đường ruột của gà”, Tuyển tập báo cáo tại Hội nghị Công nghệ Sinh học toàn quốc năm 2003, pp. 101-105.

  6. Võ Thị Thứ, Lã Thị Nga, Trương Ba Hùng, Nguyễn Minh Dương, Nguyễn Liêu Ba (2003), “Nghiên cứu tạo chế phẩm BIOCHE và đánh giá tác dụng của chế phẩm đến môi trường nước nuôi tôm cá”, Tuyển tập báo cáo tại Hội nghị Công nghệ Sinh học toàn quốc năm 2003, pp. 119-122.

  7. Trần Quốc Việt, Bùi Thị Thu Huyền, Dương Văn Hợp, Vũ Thành Lâm (2007), “Nghiên cứu các thông số kỹ thuật sản xuất probiotic dạng lỏng và dạng bột dùng trong chăn nuôi”, Báo cáo khoa học năm 2007 – Phần thức ăn và dinh dưỡng vật nuôi, pp. 204 – 214.

TÀI LIỆU TIẾNG NƯỚC NGOÀI

  1. Apajalahti. J.H.A, L.K. Sarkilabti, B.R.E. Maki, J.P. Heikkinen, P.H. Nurminen and W.E. Holben (1998), “Effective recovery of bacteria DNA and percent-guanine-plus-cytosin-based analysis of community structure in the gastrointestinal tract of broiler chickens”, Appl Environ. Microbiol, 64, pp. 4084 - 4088.

  2. Arturo. A., Mario Rosa M., and Maria A. M., (2006), “Probiotic for animal nutrition in the European Union”, Regulation and safety assessments, 45, pp. 91-95.

  3. Bergey's Manual of Systematic Bacteriology (1984), Williams & Wilkins, pp. 158-168.

  4. Breton. J and Munoz. A (1998), “Effects of probiotics in the incidence and treatment of neonatal diarrhea”, 15th International Pig Veterinary Society Congress. Nottingham University Press, pp. 24-32.

  5. Buts. J. P., Bernasconi. P., Van Craynest. M.P., Maldague. P. and De Meyer. R. (1986), “Response of human and rats small intestinal mucosa to oral administration of Saccharomyces boulardii”, Pediatr., Res, 20(2), pp. 251-256.

  6. Castagliuolo I., Riegler M.F., Valenick L., Lamont J.T. and Pothoulakis C. (1999), “Saccharomyces boulardii protease inhibits the effects of Clostridium difficile Toxins A and B in Human Colonic Mucosa”, Infect. Immun. 67, pp. 302-307.

  7. Cebra. J. J. (1999), “Influences of microbiota on intestinal immune system development”, American Journal of Clinical Nutrition, 69, pp. 1046S-1051S.

  8. Conway. P. L. (1994),Function and regulation of gastrointestinal microbiota of the pig”. In: Proceedings of the VIth International Symposium on Digestive Physiology in Pigs. EAAP Publication no. 80. Edited by Souffrant, W.B., Hagemeister, H. pp. 231-240.

  9. Conway. P. L. (1996), “Development of the intestinal microbiota. Gastrointestinal microbes and host interactions”, In: Gastrointestinal Microbiology: Vol. 2. Edited by Mackie, R.L., White, B.A., Isaacson, R.E. pp. 3-39. Chapman and Hall, London.

  10. Czerucka. D. and Rampal. P. (2002), “Experimental effects of Saccharomyces boulardii on diarrheal pathogens”, Microbes and infection, 4, pp. 733-739.

  11. Dai. D., Nanthkumar. N. N., Newburg. D. S. and Walker. W.A. (2000), “Role of oligosaccharides and glycol conjugates in intestinal host defense. J. Pediatric Gastroenterol. Nutr, 30, pp. S23–S33.

  12. Damgaard and Mclaren (2006), “Probiotics for pigs”, www.pigsite.

  13. Dugas. B., Mercenier. A., Lenoir – Wijnkoop. I., Arnaud. C., Dugas. N. and Postaire. E. (1999), “Immunity and prebiotics”, Immunology Today, 20, pp. 387-390.

  14. FAO/WHO. (2001), “Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria”, Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Argentina October. 2001.

  15. FAO/WHO (2002), Guidelines for the Evaluation of Probiotics in Food, Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food London, Ontario, Canada, April 30 and May 1, 2002.

  16. Fialho. E.T., Vassalo. M, Lima. J.A.F. and Bertechine. A.G. (1998), “Probiotics utilization for piglets from 10 to 30 kg (performance and metabolism assay)”, In: Proceedings. Contributed Papers - Vol. 1. The 8th. World Conference on Animal Production. June. 28-July 4, 1998, Seoul National University, Seoul, Korea. pp. 622-623.

  17. Fonty. G, Jouany. J.P, Forano. E. and Gouet P. (1995), Cited by Didier Jans. 2005, Probiotic in animal nutrition, pp. 2-20.

  18. Fontaine. N., Meslin. J. C., Lory. V and Andrieux. C (1996), “Intestinal mucin distribution in the germ-free and in the heteroxenic rather boring a human bacterial flora: Effect of inulin in the diet”, Br. J. Nutr, 75, pp. 881–892.

  19. Fuller. R. (1989), “Probiotics in man and animals”. J Appl Bacteriol, 66, pp. 65–78.

  20. Fuller. R. (1992), “History and development of probiotics”, In: R. Fuller (Ed.) Probiotics: The Scientific Basis. pp 1−8. Chapman & Hall, London.

  21. Galassi. G.; Sandrucci. A.; Tamburini. A.; Succi. G. (2001), “Energy utilization of a low N-diet added with an antibiotic or with a probiotic in fattening pigs”,  Animal physiology – Nutrition, Proceedings of the 15th symposium on energy metabolism in animals, Wageningen, p. 145-148.

  22. Gardiner. G.E., O’Sullivan. E., Kelly. J., Auty. M.A.E., Fitzgerald. G.F. (2000), “Comparative Survival Rates of Human-Derived Probiotic Lactobacillus paracasei and L. salivarius Strains during Heat Treatment and Spray Drying”, Applied and Environmental Microbiology. 66(6), pp. 2605-2612.

  23. Gibson. G. R and Fuller. R. (2000), “Aspect of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use”, J. Nut, 130, pp. 391-395.

  24. Glick. B. (1995), The immune system of poultry, Poultry Production. P. Hunton, ed. Elsevier Science, Amsterdam, pp. 55-62.

  25. Gong. J, Forster. R. J., Yu. H., Chamber. J.R., Sabour. P.M., Wheatcroft. R. and Chen. S. (2002), “Diversity and phylogenetic analysis of bacteria in the muscosa of chicken ceca and comparison with bacteria in the cecal lumen”, FEMS. Microbiol. Lett, 208, pp. 1-7.

  26. Hector. C (2006), Assessing The Results Of The EU Ban On Antibiotic Feed Additives, http://www.the poultry site.com Feature Article on Feed and Nutrition.

  27. Henrich. S (2006), “Acute pancreatitis: ABCs”, Ann Surg, 243, pp. 154–168.

  28. Hershberg. R.M. and L. F. Mayer (2000), “Antigen processing and presentation by intestinal epithelial cells – polarity and complexity”, Immunol. Today 21, pp. 123–128.

  29. Jans. D. (2005), “Probiotics in Animal Nutrition”, Booklet. www. Fefana.org. pp. 4-18.

  30. Jin. L. Z., Ho. Y. W., Abdullah. N., Ali. M.A. and Jalaludin S. (1998), “Effects of adherent Lactobacillus cultures on growth, weight of organs and intestinal microflora and volatile fatty acids in broilers”, Animal Feed Science, 70, pp. 197–209.

  31. Kalavathy. R, Abdullah. N, Jalaludin. S and Ho. Y. W (2003), “Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens”, Br Poult Sci, 79, pp. 886–891.

  32. Kozaki. M., Uchimura. T., and S. Okada (1992), “ Identification method for lactic acid bacteria”, In Experimental Manual for Lactic acid bacteria, Akasurashoten, Tokyo, pp. 21-73.

  33. Lessard. M. and Brisson. G. J. (1987), “Effect of a Lactobacillus fermentation product on growth, immune response and fecal enzyme activity in weaned pigs”, Can. J. Anim. Sci, 67, pp. 509-516.

  34. McCracken. V. J. and R. G. Lorenz (2001), “The gastrointestinal ecosystem: Aprecarious alliance among epithelium, immunity and microbiota”, Cell. Microbiol, 3, pp. 1–11.

  35. Navas Sánchez, Yannellys; Quintero Moreno, Armando; Ventura, Max; Casanova, Angel; Páez, Angel y Romero, Santos (1995), “Use of probiotics in the feeding of pigs in the postweaning phase”, Revista Científica, 5(3), pp. 193-198

  36. Netherwood. T, Gilbert. H.J., Parker. D.S. and O’Donnell. A.G. (1999), “Probiotics shown to change bacterial community structure in the avian gastrointetinal tract”, Appl. Environ. Microbiol, 65, pp. 5134-5138.

  37. Patterson. J.A and Burkholder. K.M. (2003), “Application of prebiotics and probiotics in poultry production”, J. Animal Science, 82, pp. 627-631.

  38. Qamar. A., Aboudola. S. and Warny. M (2001), “Saccharomyces boulardii stimulates intestinal immunoglobulin A immune response to Clostridium difficile toxin A in mice”, Infect Immun, 69, pp. 2762.

  39. Rolfe. R.D. (2000), “The role of probiotic cultures in the control of gastro-intestinal health”, J. Nutr, 130, pp. 396S–402S.

  40. Sakiyama, Y., Nguyen, K. N. T., Nguyen, M. G., Miyadoh, S., Duong, V. H. & Ando, K. (2009), “Kineosporia babensis sp. nov., isolated from plant litter in Vietnam”, Int J Syst Evol Microbiol, 59, pp. 550-554.

  41. Sameh. H. M. (2003), “Influence of Different Capsule Materials on the Physiologycal Properties of Microencapsulated Lactobacillus acidophilus”, Dessertation at the University of Bonn. pp. 49-50.

  42. Sanders. M. E. and Klaenhammers. T. R. (2001), “The scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic”, J. Dairy Sci. 84, pp. 319-321.

  43. Savage. D.C. (1987), “Factors influencing biocontrol of bacterial pathogens in the intestine”, Food Technol, 41, pp. 82-97.

  44. SCAN (2000): Report of the Scientific Committee on Animal Nutrition on the Safety of Use of Bacillus Species in Animal Nutrition. European Commission Health & Consumer Protection Directorate-General.

  45. Schat. K.A. and Myers. T. J. (1991), “Avian Intestinal Immunity”, Crit. Rev. Poult. Biol, 3, pp. 19–34.

  46. Schillinger U. (1996), “Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods”, Trend in food Science and Technology, 64, pp. 158-164.

  47. Ng. S. C., Hart. A. L., Kamm. M. A., Stagg. A. J. and Knight. S. C. (2009), “Mechanisms of Action of Probiotics: Recent Advances”, Inamm Bowel Dis, 15(2), pp. 300 – 310.

  48. Steiner. T. (2006), Managing Gut Health, First published 2006. Nottingham University Press, Nottingham, UK, pp. 45-56.

  49. Tannock. G.W. (1999), “Analysis of the intestinal microflora: A renaissance.”, Antonie van Leenwenhoek, 76, pp. 265-278.

  50. Vahjen. W., Glaser. V and Simon. O. (1998), “Influence of xylanase supplemented feed on the development of selected bacterial groups in the intestinal tract of broiler chicks”, J. Agr. Sci., 130, pp. 489-500

  51. Van der Wielen. P.W.J, Biesterveld. J. S., Notermans. S., Hofstra. H. and Van knapen. F. (2000), “Role of volatile fatty acid development of the cecal microflora in broiler chicken during growth”, Appl. Environ. Microbiol, 66, pp. 2536-2540.

  52. Yeo. J. and Kim. K. (1997), “Effect of feeding diets containing an antibiotic, a probiotic or yucca extract on growth and intestinal N rease activity in broiler chicks”, Poult. Sc., 76, pp. 381-38.

  53. Zhu. S.Y., Zhong. T., Pandya. Y. and Joerger. R. D. (2002), “16S rRNA-based analysis of microbiota from the cecum of broiler chickens”, Appl. Microbiol, 68, pp. 124–137.

  54. www.OzScientific.com

PHỤ LỤC



PHỤ LỤC 1

(ẢNH MINH HỌA HOẠT TÍNH KHÁNG VI KHUẨN KIỂM ĐỊNH, HOẠT TÍNH ENZYM CỦA CÁC CHỦNG VI SINH VẬT ĐƯỢC TUYỂN CHỌN)




Hình 4: Hoạt tính kháng Shigella flexneri của các chủng lactic, số 1 (NC2); 2 (Đ12); 3 (C3); 4 (5H4); 5 (Đ7); 6 (6H2); 7 (NC1); 8 (3K2) và ĐC (đối chứng).


Hình 5: Hoạt tính kháng E.coli của các chủng lactic: ĐC (đối chứng); 1 (C3); 2 (Đ7); 3 (NC2); 4 (NC1); 5 (3K2)








Hình 6. Hoạt tính xenlulaza của 1 số chủng Bacillus: ĐC- Đối chứng; 1- M73; 2- B75; 3- H3; 4- H4

Hình 7. Hoạt tính amylaza của 1 số chủng Bacillus: ĐC- Đối chứng; 1-H3; 2-M12; 3-M17; 4-M16






Hình 8: Hoạt tính amylaza của 1 số chủng Bacillus: ĐC- Đối chứng; 1 (M21); 2 (M75); 3 (M71); 4 (M51); 5 (M17); 6 (M12); 7 (H4); 8 (M73)


Hình 9: Hoạt tính kháng Shigella flexneri của các chủng vi khuẩn Bacillus: 1 (H4); 3(H3); 2 (đối chứng) và 4 (M71)

PHỤ LỤC 2

(KẾT QUẢ GIẢI TRÌNH TỰ GEN MÃ HÓA CHO rARN 16S VÀ ITS CỦA

CÁC CHỦNG NGHIÊN CỨU)

1. Chủng 1K8

GAAACCTGCCCAGAAGCGGGGGATAACACCTGGAAACAGATGCTAATACCGCATAACAACTTGGACCGCATGGTCCGAGTTTGAAAGATGGCTTCGGCTATCACTTTTGGATGGTCCCGCGGCGTATTAGCTAGATGGTGGGGTAACGGCTCACCATGGCAATGATACGTAGCCGACCTGAGAGGGTAATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGAAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACATATCTGAGAGTAACTGTTCAGGTATTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCTTCGGCTCAACCGAAGAAGTGCATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGTATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCATACCGTAAACGATGAATGCTAAGTGTTGGAGGGTTTCCGCCCTTCAGTGCTGCAGCTAACGCATTAAGCATTCCGCCTGGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCTACGCGAAGAACCTTACCAGGTCTTGACATACTATGCAAATCTAAGAGATTAGACGTTCCCTTCGGGGACATGGATACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATTATCAGTTGCCAGCATTAAGTTGGGCACTCTGGTGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGATGGTACAACGAGTTGCGAACTCGCGAGAGTAAGCTAATCTCTTAAAGCCATTCTCAGTTCGGATTGTAGGCTGCAACTCGCCTACATGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGAGAGTTTGTAACACCCAAAGTCGGTGGGGTAACCTTTTAGGAACCAGCCGCCTAAGGTGGGACAGATGATTAGGGTGAAGTCGTAACAAGGTAGCCGTAGGAGAACCTGCGGCTGGATCACCTCCTTT

Trình tự rADN 16S của chủng 1K8 tương đồng với trình tự rADN 16S của Lactobacillus arizonensis 100 % (1400/1400 bp); Lactobacillus pentosus 100 % (1400/1400 bp); Lactobacillus plantarum 99,9 % (1/1400 bp ); Lactobacillus paraplantarum 99,9 % (1/1400 bp).

2. Chủng 6H2

CTTCTTTTTCCACCGGAGCTTGCTCCACCGGAAAAAGAGGAGTGGCGAACGGGTGAGTAACACGTGGGTAACCTGCCCATCAGAAGGGGATAACACTTGGAAACAGGTGCTAATACCGTATAACAATCAAAACCGCATGGTTTTGATTTGAAAGGCGCTTTCGGGTGTCGCTGATGGATGGACCCGCGGTGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCCACGATGCATAGCCGACCTGAGAGGGTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCGGCAATGGACGAAAGTCTGACCGAGCAACGCCGCGTGAGTGAAGAAGGTTTTCGGATCGTAAAACTCTGTTGTTAGAGAAGAACAAGGATGAGAGTAACTGTTCATCCCTTGACGGTATCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGAGACTTGAGTGCAGAAGAGGAGAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAGGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAATGCTAAGTGTTGGAGGGTTTCCGCCCTTCAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTTTGACCACTCTAGAGATAGAGCTTCCCCTTCGGGGGCAAAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATTGTTAGTTGCCATCATTCAGTTGGGCACTCTAGCAAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGGAAGTACAACGAGTCGCGAAGTCGCGAGGCTAAGCTAATCTCTTAAAGCTTCTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGGAATCGCTAGTAATCGCGGATCAGCACGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAACCTTTTGGAGCCAGCCGCCTAAGGTGGGATAGATGATTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT

Trình tự rADN 16S của chủng 6H2 tương ứng với trình tự rADN 16S của Enterococcus lactis 99,6% (1302/1306 bp); Enterococcus faecium 99,8% (1304/1306 bp).

3. Chủng Đ2

GTGGGAAACCTGCCCAGAACGGGGGGATAACACCTGGAAACAGATGCTAATACCGCATAACAACTTGGACCGCATGGTCCGAGTTTGAAAGATGGCTTCGGCTATCACTTTTGGATGGTCCCGCGGCGTATTAGCTAGATGGTGGGGTAACGGCTCACCATGGCAATGATACGTAGCCGACCTGAGAGGGTAATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGAAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACATATCTGAGAGTAACTGTTCAGGTATTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCTTCGGCTCAACCGAAGAAGTGCATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGTATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCATACCGTAAACGATGAATGCTAAGTGTTGGAGGGTTTCCGCCCTTCAGTGCTGCAGCTAACGCATTAAGCATTCCGCCTGGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCTACGCGAAGAACCTTACCAGGTCTTGACATACTATGCAAATCTAAGAGATTAGACGTTCCCTTCGGGGACATGGATACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATTATCAGTTGCCAGCATTAAGTTGGGCACTCTGGTGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGATGGTACAACGAGTTGCGAACTCGCGAGAGTAAGCTAATCTCTTAAAGCCATTCTCAGTTCGGATTGTAGGCTGCAACTCGCCTACATGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGAGAGTTTGTAACACCCAAAGTCGGTGGGGTAACCTTTTAGGAACCAGCCGCCTAAGGTGGGACAGATGATTAGGGTGAAGTCGTAACAAGGTAGCCGTAGGAGAACCTGCGGCTGGGATCACCTCCTTT

Trình tự rADN 16S của chủng Đ2 tương ứng với trình tự rADN 16S của Lactobacillus arizonensis 99,8% (1268/1270 bp); Lactobacillus pentosus 99,8 % (1268/1270 bp); Lactobacillus plantarum 99,7% (1267/1270 bp); Lactobacillus paraplantarum 99,7 % (1267/1270 bp).

4. Chủng C3

AcAtttGAGGTGAGTGGCgAACTGGTGAGTAaCGCGTGGGAAACCTGTCCCagAAGCGGGGGATAACACCTGGAAACAGATGCTAATACCGCATAACAACTTGGACCGCATGGTCCGAGTTTGAAAGATGGCTTCGGCTATCACTTTTGGATGGTCCCGCGGCGTATTAGCTAGATGGTGGGGTAACGGCTCACCATGGCAATGATACGTAGCCGACCTGAGAGGGTAATCGGCCACATTGGGACTGAGACACGGCCCaaacTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGAAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACATATCTGAGAGTAACTGTTCAGGTATTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCcTTCGGCTCAACCGAAGAAGTGCATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGTATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCATACCGTAAACGATGAATGCTAAGTGTTGGAGGGTTTCCGCCCTTCAGTGCTGCAGCTAACGCATTAAGCATTCCGCCTGGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTtAATTcGAAGCTACGCGAAGAACCTTACCAGGTCTTGACATACTATGCAAATCTAAGAGATTAGACGTTCCCTTCGGGGACATGGATACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATTATCAGTTGCCAGCATTAAGTTGGGCACTCTGGTGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGATGGTACAACGAGTTGCGAACTCGCGAGAGTAAGCTAATCTCTTAAAGCCATTCTCAGTTCGGATTGTAGGCTGCAACTCGCCTACATGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAAtACGTTCCCGGGCcTTGTACACaCCGCCCGTCACACCAtGAgAGTTTGT

Trình tự rADN 16S của chủng C3 tương ứng với trình tự rADN 16S của Lactobacillus arizonensis 99,8% (1397/1400 bp); Lactobacillus pentosus 99,8% (1397/1400 bp); Lactobacillus plantarum 99,7% (1396/1400 bp).

5. Chủng NC1

GCCAACGAGTGGCGGACGGGTGAGTAACACGTAGGTAACCTGCCCAGAAGCGGGGGACAACATTTGGAAACAGATGCTAATACCGCATAACAGCGTTGTTCGCATGAACAACGCTTAAAAGATGGCTTCTCGCTATCACTTCTGGATGGACCTGCGGTGCATTAGCTTGTTGGTGGGGTAACGGCCTACCAAGGCGATGATGCATAGCCGAGTTGAGAGACTGATCGGCCACAATGGGACTGAGACACGGCCCATACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGGCGCAAGCCTGATGGAGCAACACCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAGCTCTGTTGTTAAAGAAGAACACGTATGAGAGTAACTGTTCATACGTTGACGGTATTTAACCAGAAAGTCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGAGAGTGCAGGCGGTTTTCTAAGTCTGATGTGAAGCCTTCGGCTTAACCGGAGAAGTGCATCGGAAACTGGATAACTTGAGTGCAGAAGAGGGTAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAAATATATGGAAGAACACCAGTGGCGAAGGCGGCTACCTGGTCTGCAACTGACGCTGAGACTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGATGAGTGCTAGGTGTTGGAGGGTTTCCGCCCTTCAGTGCCGGAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGACCGCGAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCTACGCGAAGAACCTTACCAGGTCTTGACATCTTGCGCCAACCCTAGAGATAGGGCGTTTCCTTCGGGAACGCAATGACAGGTGGTGCATGGTCGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTTACTAGTTGCCAGCATTAAGTTGGGCACTCTAGTGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGACGACGTCAGATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGACGGTACAACGAGTCGCGAACTCGCGAGGGCAAGCAAATCTCTTAAAACCGTTCTCAGTTCGGACTGCAGGCTGCAACTCGCCTGCACGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCCCACCATGAGAGTTTGTAACACCCAAAGTCGGTGGGGTAACCTTTTAGGAGCCAGCCGCTAAGGTGGGACAGATGATTAGGGTGAAGTCGTAACAAGGTAGCCGTAGGAGAACCTGCGGCTGGATCACCTCCTTT

Trình tự rADN 16S của chủng NC1 tương đồng với trình tự rADN 16S của Lactobacillus fermentum 99,7 % (1446/1450).

6. Chủng NC2

ACGCTGGCGGCGTGCCTAATACATGCAAGGCGAACGAGTTCTCGTTGATGATCGGTGCTTGCACCGAGATTCAACATGGAACGAGTGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCTTAAGTGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTTGGCTGAAAGATGGCGTAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAATGGCTCACCAAGGCGATGATACGTAGCCGAACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTGTCGGGTCGTAAAACTCTGTTGTTGGAGAAGAATGGTCGGCAGAGTAACTGTTGTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGCGCATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTTCCGCCCTTCAGTGCCGCAGCTAACGCATTAAGCATTCCGCCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCTTTTGATCACCTGAGAGATCAGGTTTCCCCTTCGGGGGCAAAATGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATGACTAGTTGCCAGCATTTAGTTGGGCACTCTAGTAAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGATGGTACAACGAGTTGCGAGACCGCGAGGTCAAGCTAATCTCTTAAAGCCATTCTCAGTTCGGACTGTAGGCTGCAACTCGCCTACACGAAGTCGGAATCGCTAGTAATCGCGGATCAGCACGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGAGAGTTTGTAACACCCGAAGTCGGTGGCGTAACCCTTTTAGGGAGCGAGCCGTCTAAGGTGGGACAAATGATTAGGGG

Trình tự rADN 16S của chủng NC2 tương đồng với trình tự rADN 16S của Lactobacillus casei 99,7 % ( 1483/1486 ).

7. Chủng Đ7

CGATGATTCTAAGTGTTGGAGGTTCCGCCCTTCATGCTGCAGCTAACGCTTTAAGTAATCCGCCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAAGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCTACGCGAAGAACCTTACCAGGTCTTGACATCTTCTGACAGTCTAAGAGATTAGAGGTTCCCTTCGGGGACAGAATGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATTACTAGTTGCCAGCATTAAGTTGGGCACTCTAGTGAGACTGCCGGTGACAAACCGGAGGAAGGCGGGGACGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGATGGTACAACGAGTCGCGAGACCGCGAGGTTAAGCTAATCTCTTAAAACCATTCTCAGTTCGGACTGTAGGCTGCAACTCGCCTACACGAAGTCGGAATGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGAGAGTTTGTAACACCCAAAGCCGGTGGGGTAACCTTTTAGGAGCTAGCCGTCTAAGGTGGGACAGATGATTAGGGTGAGTCGTTACAAGGTAACAA

Trình tự rADN 16S của chủng Đ7 tương đồng với trình tự rADN 16S của Pediococcus pentosaceus 99,7 % ( 1542/1547).

8. Chủng Đ12

TTCCGCCCATTCAGTGCTGCAGCTAACGCTTTAAGCATTCCGCCTGGGGAGTACGGCCGCTTCCGCCCTTCAGTGCTGCAGCTAACGCATTAAGCATTCCGCCTGGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCTACGCGAAGAACCTTACCAGGTCTTGACATACTATGCAAATCTAAGAGATTATTCGAAGCTACGCGAAGAACCTTACCAGGTCTTGACATACTATGCAAATCTAAGAGATTAGACGTTCCCTTCGGGGACATGGATACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGGACGTTCCCTTCGGGGACATGGATACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATTATCAGTTGCCAGCATTAAGTAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATTATCAGTTGCCAGCATTAAGTTGGGCACTCTGGTGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCTGGGCACTCTGGTGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGATGGTACAACGAGTTGCGATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGATGGTACAACGAGTTGCGAACTCGCGAGAGTAAGCTAATCTCTTAAAGCCATTCTCAGTTCGGATTGTAGGCTGCAACAACTCGCGAGAGTAAGCTAATCTCTTAAAGCCATTCTCAGTTCGGATTGTAGGCTGCAACTCGCCTACATGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCGCCTACATGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGAGAGTTTGTAACACCCAAAGTCGGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGAGAGTTTGTAACACCCAAAGTCGGTGGGGTAACCTTTTAGGAACCAGCCGCCTAAGGTGGGACAGATGATTAGGGTGAAGGGGGTAACCTTTTAGGAACCAGCCGCCTAAGGTGGGACAGATGATTAGGGTGAAG

Trình tự rADN 16S của chủng Đ12 tương đồng với trình tự rADN 16S của Lactobacillus plantarum 99,9 % ( 1531/1532).



9. Chủng 2M33

CCCTCCAACACATTAGCATTCATCGTTTACGGTATGGACTACCAGGGTATCTAATCCTGTTTGCTACCCATACTTTCGAGCCTCAGCGTCAGTTACAGACCAGACAGCCGCCTTCGCCACTGGTGTTCTTCCATATATCTACGCATTTCACCGCTACACATGGAGTTCCACTGTCCTCTTCTGCACTCAAGTTTCCCAGTTTCCGATGCACTTCTTCGGTTGAGCCGAAGGCTTTCACATCAGACTTAAAAAACCGCCTGCGCTCGCTTTACGCCCAATAAATCCGGACAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGTGGCTTTCTGGTTAAATACCGTCAATACCTGAACAGTTACTCTCAGATATGTTCTTCTTTAACAACAGAGTTTTACGAGCCGAAACCCTTCTTCACTCACGCGGCGTTGCTCCATCAGACTTTCGTCCATTGTGGAAGATTCCCTACTGCTGCCTCCCGTAGGAGTTTGGGCCGTGTCTCAGTCCCAATGTGGCCGATTACCCTCTCAGGTCGGCTACGTATCATTGCCATGGTGAGCCGTTACCCCACCATCTAGCTAATACGCCGCGGGACCATCCAAAAGTGATAGCCGAAGCCATCTTTCAAACTCGGACCATGCGGTCCAGTTGTTATGCGGTATTAGCATCTGGTTCCAGGTGTTATCCCCGCTTCTGGGCAGGTTCCCACGTGTTACTCACATCGCCTCCTCAATGTAATCATGAGGAAGCCATCATACAATCGTCGATTGCAGTATAGCCCAGGTGCTAAACGAAAAAAAAGGTGA

Trình tự rADN 16S của chủng Đ12 tương đồng với trình tự rADN 16S của Lactobacillus plantarum 99,7 % ( 1528/1532).

10. Chủng H4

TGGcTCAGgACGAACGCTGGCGGCGtgCCTAATACATGCAaGTCGAGCGGACAGATGGGAGCTtgcTCCCTGATgTTAGCGGCGGACGGGTGAGTAACACGTGGgTAACCTGCcTGTAAGACTGGGATAAcTCCGGGAAACCGGGCTAATACCGGATGGTTGTTTGAACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACcTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGTTAGGGAAGAACAAGTACCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACTCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATCCTAGAGATAGGACGTCCCCTTCGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGACAGAACAAAGGGCAGCGAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGAATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAACCTTTTAgGAGCCAGCCGCCGAAGGTGGGACAGATGATTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT

Trình tự rADN 16S của chủng H4 tương đồng với trình tự rADN 16S của Bacillus subtilis 99,8 % (1529/1532)

11. Chủng H3

AGTTtgATcCTGGcTCAGgACGAACGCTGGCGgCGTgCTTaATACATGCAAgTCGAGCGgACCGACGGGAGCtTGcTCCcTTAGGTCAGCGGCGGACGGGTGAGTAACACGTGGgTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGCTTGATTGAACCGCATGGTTCAATCATAAAAGGTGGCTTTTAGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACCGTTCGAATAGGGCGGtACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGAGGGTTTCCGCCCTTTAGTGCTGCAGCAAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAACCCTAGAGATAGGGCTTCCCCTTCGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGGCAGAACAAAGGGCAGCGAAGCCGCGAGGCTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAACCTTTTGGAGCCAGCCGCCGAAgGTGGGACAGATGATTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGAAgGTGCGGCTGGATCACCTCCTTT

Trình tự rADN 16S của chủng H4 tương đồng với trình tự rADN 16S của Bacillus lichenifomics 99,9 % (1540/1541)

12. Chủng SB-I1

GCCGGGCCTGCGCTTAAGTGCGCGGTCTTGCTAGGCTTGTAAGTTTCTTTCTTGCTATTCCAAACGGTGAGAGATTTCTGTGCTTTTGTTATAGGACAATTAAAACCGTTTCAATACAACACACTGTGGAGTTTTCATATCTTTGCAACTTTTTCTTTGGGCATTCGAGCAATCGGGGCCCAGAGGTAACAAACACAAACAATTTTATCTATTCATTAAATTTTTGTCAAAAACAAGAATTTTCGTAACTGGAAATTTTAAAATATTAAAAACTTTCAACAACGGATCTCTTGGTTCTCGCATCGATGAAGAACGCAGCGAAATGCGATACGTAATGTGAATTGCAGAATTCCGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCAGGGGGCATGCCTGTTTGAGCGTCATTTCCTTCTCAAACATTCTGTTTGGTAGTGAGTGATACTCTTTGGAGTTAACTTGAAATTGCTGGCCTTTTCATTGGATGTTTTTTTTCCAAAGAGAGGTTTCTCTGCGTGCTTGAGGTATAATGCAAGTACGGTCGTTTTAGGTTTTACCAACTGCGGCTAATCTTTTTTTATACTGAGCGTATTGGAACGTTATCGATAAGAAGAGAGCGTCTAGGCGAACAATGTTCTTAAAGTTTACCTCTCAAATCAGGTAGGAGTACCCGCTGAACTTAAGCATAC



Trình tự gen của SB tương đồng 100% với Saccharomyces boulardii

MỤC LỤC

TÀI LIỆU THAM KHẢO 60




===========================================================


tải về 2.24 Mb.

Chia sẻ với bạn bè của bạn:
1   2




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương