LỜi nóI ĐẦu phần I tổng quan về HỆ thống thông tin quang sợI


I.4.2. Giới thiệu nguyên lý ghép kênh quang theo bước sóng



tải về 0.59 Mb.
trang2/6
Chuyển đổi dữ liệu14.07.2016
Kích0.59 Mb.
1   2   3   4   5   6
I.4.2. Giới thiệu nguyên lý ghép kênh quang theo bước sóng.

Đặc điểm nổi bật của hệ thống ghép kênh theo bước sóng quang (WDM) là tận dụng hữu hiệu nguồn tài nguyên băng rộng trong khu vực tổn hao thấp của sợi quang đơn mode, nâng cao rõ rệt dung lượng truyền dẫn của hệ thống đồng thời hạ giá thành của kênh dịch vụ xuống mức thấp nhất. Ở đây việc thực hiện ghép kênh sẽ không có quá trình biến đổi điện nào. Mục tiêu của ghép kênh quang là nhằm để tăng dung lượng truyền dẫn. Ngoài ý nghĩa đó việc ghép kênh quang còn tạo ra khả năng xây dựng các tuyến thông tin quang có tốc độ rất cao. Khi tốc độ đường truyền đạt tới một mức độ nào đó người ta đã thấy được những hạn chế của các mạch điện trong việc nâng cao tốc độ truyền dẫn. Khi tốc độ đạt tới hàng trăm Gbit/s, bản thân các mạch điện tử sẽ không thể đảm bảo đáp ứng được xung tín hiệu cực kỳ hẹp; thêm vào đó, chi phí cho các giải pháp trở nên tốn kém và cơ cấu hoạt động quá phức tạp đòi hỏi công nghệ rất cao. Kỹ thuật ghép kênh quang theo bước sóng ra đời đã khắc phục được những hạn chế trên.

Hệ thống WDM dựa trên cơ sở tiềm năng băng tần của sợi quang để mang đi nhiều bước sóng ánh sáng khác nhau, điều thiết yếu là việc truyền đồng thời nhiều bước sóng cùng một lúc này không gây nhiễu lẫn nhau. Mỗi bước sóng đại diện cho một kênh quang trong sợi quang. Công nghệ WDM phát triển theo xu hướng mà sự riêng rẽ bước sóng của kênh có thể là một phần rất nhỏ của 1 nm hay 10-9 m, điều này dẫn đến các hệ thống ghép kênh theo bước sóng mật độ cao (DWDM). Các thành phần thiết bị trước kia chỉ có khả năng xử lý từ 4 đến 16 kênh, mỗi kênh hỗ trợ luồng dữ liệu đồng bộ tốc độ 2,5 Gbit/s cho tín hiệu mạng quang phân cấp số đồng bộ (SDH/SONET). Các nhà cung cấp DWDM đã sớm phát triển các thiết bị nhằm hỗ trợ cho việc truyền nhiều hơn các kênh quang. Các hệ thống với hàng trăm kênh giờ đây đã sẵn sàng được đưa vào sử dụng, cung cấp một tốc độ dữ liệu kết hợp hàng trăm Gbit/s và tiến tới đạt tốc độ Tbit/s truyền trên một sợi đơn. Có hai hình thức cấu thành hệ thống WDM đó là:


a. Truyền dẫn hai chiều trên hai sợi:

Hệ thống WDM truyền dẫn hai chiều trên hai sợi là: tất cả kênh quang cùng trên một sợi quang truyền dẫn theo cùng một chiều (như hình 1.3), ở đầu phát các tín hiệu có bước sóng quang khác nhau và đã được điều chế , ,...., thông qua bộ ghép kênh tổ hợp lại với nhau, và truyền dẫn một chiều trên một sợi quang. Vì các tín hiệu được mang thông qua các bước sóng khác nhau, do đó sẽ không lẫn lộn. Ở đầu thu, bộ tách kênh quang tách các tín hiệu có bước sóng khác nhau, hoàn thành truyền dẫn tín hiệu quang nhiều kênh. Ở chiều ngược lại truyền dẫn qua một sợi quang khác, nguyên lý giống như trên.



b. Truyền dẫn hai chiều trên một sợi:

Hệ thống WDM truyền dẫn hai chiều trên một sợi là: ở hướng đi, các kênh quang tương ứng với các bước sóng 1, 2, ..., n qua bộ ghép/tách kênh được tổ hợp lại với nhau truyền dẫn trên một sợi. Cũng sợi quang đó, ở hướng về các bước sóng n+1, n+2,..., 2n được truyền dẫn theo chiều ngược lại (xem hình 1.4). Nói cách khác ta dùng các bước sóng tách rời để thông tin hai chiều (song công).



Hệ thống WDM hai chiều trên hai sợi được ứng dụng và phát triển tương đối rộng rãi. Hệ thống WDM hai chiều trên một sợi thì yêu cầu phát triển và ứng dụng cao hơn, đòi hỏi yêu cầu kỹ thuật cực kỳ nghiêm ngặt. Ở phía phát, các thiết bị ghép kênh phải có suy hao nhỏ từ mỗi nguồn quang tới đầu ra của bộ ghép kênh. Ở phía thu, các bộ tách sóng quang phải nhạy với dải rộng của các bước sóng quang. Khi thực hiện tách kênh cần phải cách ly kênh quang thật tốt với các bước sóng khác bằng cách thiết kế các bộ tách kênh thật chính xác, các bộ lọc quang nếu được sử dụng phải có bước sóng cắt chính xác, dải làm việc ổn định.

Hệ thống WDM được thiết kế phải giảm tối đa các hiệu ứng có thể gây ra suy hao truyền dẫn. Ngoài việc đảm bảo suy hao xen của các thiết bị thấp, cần phải tối thiểu hoá thành phần công suất có thể gây ra phản xạ tại các phần tử ghép, hoặc tại các điểm ghép nối các module, các mối hàn...., bởi chúng có thể làm gia tăng vấn đề xuyên kênh giữa các bước sóng, dẫn đến làm suy giảm nghiêm trọng tỉ số S/N của hệ thống. Các hiệu ứng trên đặc biệt nghiêm trọng đối với hệ thống WDM truyền dẫn hai chiều trên một sợi, do đó hệ thống này có khả năng ít được lựa chọn khi thiết kế tuyến.

Ở một mức độ nào đó, để đơn giản ta có thể xem xét bộ tách bước sóng như bộ ghép bước sóng chỉ bằng cách đổi chiều tín hiệu ánh sáng. Như vậy hiểu đơn giản, từ “bộ ghép - multiplexer” trong trường hợp này thường được sử dụng ở dạng chung để xét cho cả bộ ghép và bộ tách; loại trừ trường hợp cần thiết phải phân biệt hai thiết bị hoặc hai chức năng. Người ta chia loại thiết bị OWDM làm ba loại: Các bộ ghép (MUX), các bộ tách (DEMUX) và các bộ ghép/tách hỗn hợp (MUX-DEMUX). Các bộ MUX và DEMUX được sử dụng trong các phương án truyền dẫn theo một hướng, còn loại thứ ba MUX-DEMUX được sử dụng cho các phương án truyền dẫn theo hai hướng. Hình 1.5 mô tả thiết bị ghép/tách hỗn hợp.



I.4.3 Mục đích.

Do băng thông quang rất lớn (khoảng 100Ghz-km) nên nếu chỉ sử dụng cho mục đích đơn lẻ sẽ rất hao phí. Vì vậy sử dụng công nghệ WDM nhằm mục đích tận dụng băng tần truyền dẫn của sợi quang bằng cách truyền đồng thời nhiều kênh bước sóng trên cùng một sợi quang. Qua nghiên cứu ITU-T đã đưa ra cụ thể các kênh bước sóng và khoảng cách giữa các kênh này có thể chọn ở các cấp độ 200Ghz, 100Ghz, 50Ghz.
I.5. Ưu và nhược điểm của công nghệ WDM.

Trãi qua quá trình nghiên cứu và triển khai, mạng thông tin quang cũng như mạng quang sử dụng công nghệ WDM đã cho thấy những ưu điểm nổi trội:

* Dung lượng truyền dẫn lớn:

Sử dụng công nghệ WDM có nghĩa là trong một sợi quang có thể ghép rất nhiều kênh quang (có bước sóng khác nhau) để truyền đi , mỗi kênh quang lại ứng với một tốc độ bit nào đó (TDM). Hiện nay đã thử nghiệm thành công hệ thống WDM 80 bước sóng với mỗi bước sóng mang tín hiệu TDM tốc độ 2,5Gbit/s, tổng dung lượng hệ thống sẽ là 200Gbit/s. Trong khi đó với hệ thống TDM, tốc độ bit mới chỉ đạt tới STM -256 (dung lượng 40 Gbit/s).

* Tính trong suốt của mạng WDM

Do công nghệ WDM thuộc kiến trúc lớp mạng vật lý nên có thể hỗ trợ các định dạng số liệu và thư thoại chuyển mạch kênh, ATM, Gigabit Ethernet, ESCON, IP…



Mạng trong suốt: Trong một dải băng thông xác định, mạng có thể truyền các dịch vụ với bất kì tốc độ nào và với bất kỳ giao thức nào. Như vậy nhà cung cấp dịch vụ có thể đáp ứng nhiều dịch vụ khác nhau bằng cách sử dụng một cơ sở hạ tầng duy nhất. Như vậy sẽ rất có lợi về mặt kinh tế và vẫn có thể triển khai các dich vụ mới một cách hiệu quả, nhanh chóng mà không làm ảnh hưởng gì đến các dịch vụ trước đó.

* Việc nâng cấp dung lượng hệ thống thực hiện dễ dàng, linh hoạt.

Kỹ thuật WDM cho phép tăng dung lượng mạng hiện có lên đến hàng Tbps, có thể đáp ứng nhu cầu mở rộng ở nhiều cấp độ khác nhau. Bên cạnh đó nó cũng mở ra một thị trường mới, đó là thuê kênh quang (hay bước sóng quang) ngoài việc sợi hay cáp quang. việc nân cấp hệ thống đơn giản chỉ là cắm thêm các card mới trong khi hệ thống vẫn hoạt động (Plug and Play).

* Quản lý băng tần hiệu quả và cấu hình hệ thống mềm dẻo

Bằng cách thay đổi phương thức đinh tuyến và phân bổ bước sóng trong mạng WDM, ta có thể dễ dàng quản lý và cấu hình lại hệ thống một cách linh hoạt tuỳ theo yêu cầu thực tế. Hiện nay WDM là công nghệ duy nhất cho phép xây dựng mô hình mạng truyền tải quang OTN (Optical Transport Network) cho phép xây dựng mạng quang trong suốt.

* Sử dụng công nghệ WDM có thể tận dụng cơ sở hạ tầng của các mạng quang trước đó, giảm được chi phí đầu tư mới. Do vậy tiết kiệm và kinh tế hơn.


CHƯƠNG II: CÁC THIẾT BỊ QUANG THỤ ĐỘNG TRONG WDM

Trong chương trước, chúng ta đã có tầm nhìn bao quát về một tuyến truyền dẫn quang và công nghệ ghép kênh quang theo bước sóng WDM. Các thiết bị OWDM rất đa dạng, có thể thực hiện qua các phần tử tích cực hay thu động, nguồn quang phổ hẹp, các thiết bị vi quang, các thiết bị phân cực quang, quay pha, cách tử quang, ghép sợi .... Nhưng tưu trung lại, chúng làm việc chủ yếu theo hai nguyên tắc chính: nguyên tắc tán sắc góc và nguyên tắc lọc quang. Ngày nay, cùng với những tiến bộ không ngừng trong nhiều lĩnh vực khác của ngành công nghiệp truyền thông, đặc biệt là với công nghệ mới đầy hấp dẫn này, các thiết bị WDM không ngừng được đổi mới và cải tiến cho phù hợp nhằm vươn tới những ngưỡng dung lượng truyền dẫn khổng lồ với chi phí đầu tư thấp. Chương này nhằm đề cập đến các vấn đề kỹ thuật từ cơ bản đến phức tạp đã và đang được sử dụng trong các thiết bị WDM.

Các phần tử sử dụng trong hệ thống OWDM rất đa dạng, nhưng có thể phân loại ra như hình 2.1:



Để đơn giản khi xem xét các thiết bị WDM, chúng ta chủ yếu lấy bộ tách kênh theo bước sóng để phân tích, bởi vì nếu xét ở một mức độ nào đó thì nguyên lý các thiết bị WDM có tính thuận nghịch về cấu trúc, do đó hoạt động của các bộ ghép kênh cũng được giải thích tương tự bằng cách đơn giản là thay đổi hướng tín hiệu đầu vào và đầu ra.

Các bộ tách (hay các bộ ghép) được chia ra làm hai loại chính theo công nghệ chế tạo là:


  1. Thiết bị WDM vi quang

  2. Thiết bị WDM ghép sợi.

Ở loại thứ nhất, việc tách/ghép kênh dựa trên cơ sở các thành phần vi quang. Các thiết bị này được thiết kế chủ yếu sử dụng cho các tuyến thông tin quang dùng sợi đa mode, chúng có những hạn chế đối với sợi dẫn quang đơn mode. Loại thứ hai dựa vào việc ghép giữa các trường lan truyền trong các lõi sợi kề nhau. Kỹ thuật này phù hợp với các tuyến sử dụng sợi đơn mode.
I. CÁC THIẾT BỊ WDM VI QUANG:

Các thiết bị WDM vi quang được chế tạo dựa trên hai phương pháp công nghệ khác nhau là: các thiết bị có bộ lọc và các thiết bị phân tán góc. Thiết bị lọc chỉ hoạt động mở cho một bước sóng (hoặc một nhóm các bước sóng) tại một thời điểm, nhằm để tách ra một bước sóng trong nhiều bước sóng. Để thực hiện thiết bị hoàn chỉnh, người ta phải tạo ra cấu trúc lọc theo tầng. Còn thiết bị phân tán góc lại đồng thời đưa ra tất cả các bước sóng.


I.1. Các bộ lọc trong thiết bị WDM.

Trong thiết bị ghép-tách bước sóng vi quang thường sử dụng bộ lọc bước sóng bằng màng mỏng. Thí dụ bộ tách bước sóng dùng bộ lọc màng mỏng thể hiện như hình 2.2.



Bộ lọc có cấu trúc đa lớp gồm các lớp điện môi rất mỏng, có chiết suất cao và thấp đặt xen kẽ nhau. Bộ lọc làm việc dựa trên nguyên lý buồng cộng hưởng Fabry-Perot, gồm hai gương phản xạ một phần đặt song song cách nhau chỉ bởi một lớp điện môi trong suốt.



Bề dày các lớp bằng 1/4 bước sóng truyền đối với bộ lọc bậc 0 và bằng 3/40 đối với bộ lọc bậc 1 và được chế tạo từ vật liệu có hệ số chiết suất thấp như MgF2 có n = 1,35 hoặc SiO2 có n = 1,46 và vật liệu có chỉ số chiết suất cao như TiO2 có n = 2,2.

Khi chùm tia sáng đi vào thiết bị, thì hiện tượng giao thoa ánh sáng xảy ra do phản xạ nhiều lần trong khoang cộng hưởng. Nếu bề dày của lớp đệm là số nguyên lần của nửa bước sóng ánh sáng tới thì giao thoa xếp chồng xảy ra và công suất quang của bước sóng đạt giá trị cực đại và bước sóng đó sẽ được truyền dẫn thông suốt nhất. Các chùm ánh sáng ở những bước sóng khác trong buồng cộng hưởng hầu như bị phản xạ hoàn toàn. Đường cong phân bố công suất ở đầu ra của bộ lọc có dạng như hình 2.4:

Bộ lọc thông thấp hoặc thông cao có bước sóng cắt c (hình 2.5a là thông cao và hình 2.5b là thông thấp). Bộ lọc thông giải có bước sóng trung tâm 0 và độ rộng giải  (hình 2.5c). T là hàm truyền đạt của bộ lọc.



Các bộ lọc thông thấp hoặc thông cao thường được sử dụng để tách 2 bước sóng có khoảng cách xa nhau, chẳng hạn 850 nm và 1300 nm hoặc 1300 nm và 1550 nm. Loại bộ lọc như vậy, thích hợp cho hệ thống WDM sử dụng nguồn quang có dải phổ rộng (LED). Bộ lọc thông giải được sử dụng trong WDM khi nguồn quang có phổ hẹp (LASER). Đối với bộ lọc thông giải có một vài yêu cầu: đó là độ dốc sườn đường cong hàm truyền đạt phải đủ lớn để tránh xuyên âm giữa các kênh kề nhau, mặt khác độ rộng giải  có dung sai cho phép để đề phòng dịch bước sóng trung tâm của nguồn quang khi nhiệt độ thay đổi.

Dưới đây ta xem xét một số thiết bị tách bước sóng dùng bộ lọc màng mỏng:
a. Bộ tách hai bước sóng.

Cấu trúc cơ bản của bộ tách hai kênh như ở hình 2.6a, trong khi đó việc thực hiện thực tế cấu trúc này chỉ đơn giản như ở hình 2.6b. Các phần tử chuẩn trực và hội tụ là các lăng kính GRIN 1/4 chu kỳ P. Bộ lọc được thiết kế để phát đi 1 và phản xạ 2 sẽ được đặt giữa hai lăng kính.



Các thiết bị tách bước sóng này có sẵn trên thị trường thương mại và được sử dụng rộng rãi ở các hệ thống thông tin quang sử dụng các nguồn phát LED ở bước sóng 850 nm và 1300 nm, hoặc sử dụng các nguồn phát phổ hẹp của các tổ hợp bước sóng như: 800 nm và 830 nm; 800 nm và 890 nm; 1200 nm và 1300 nm; hoặc 1300nm và 1550 nm vv..., với suy hao xen nhỏ hơn 3dB (cho mỗi cặp) và suy hao xuyên kênh cao hơn 25dB.


b. Bộ tách lớn hơn hai bước sóng.

Thiết bị này sử dụng các bộ lọc nối tiếp nhau, và mỗi bộ lọc cho đi qua một bước sóng và phản xạ các bước sóng còn lại (xem hình 2.7):



Trong thực tế, thiết bị tách nhiều bước sóng ngoài các bộ lọc còn có thấu kính, các sợi quang vv...

Hình 2.8 là bộ tách 5 bước sóng dùng thấu kính GRIN và khối thuỷ tinh trong suốt.

Đôi khi có thể thực hiện tạo ra bộ tách kênh mà không cần sử dụng đến các phần tử chuẩn trực. Ví dụ như ở hình 2.9, thiết bị không có lăng kính, mà các bộ lọc giao thoa ở đây được đặt trên từng đoạn một cách thích hợp và đầu sợi được mài nhẵn.





c. Thiết bị kết hợp ghép và tách bước sóng (MUX - DMUX)

Hình 2.10 thể hiện thiết bị MUX-DEMUX 4 bước sóng. Các bước sóng 0,81 m và 0,89 m từ hai nguồn quang khác nhau được ghép thành một tia chung để truyền qua sợi quang. Các bước sóng 1,2 m và 1,3 m từ sợi quang đến được tách thành hai tia ứng với mỗi bước sóng để đưa đến diode tách quang. Thấu kính GRIN tại cổng vào dùng loại 1/4P phân kì, tại cổng ra dùng loại 1/4P hội tụ.




Trong đó:

BPF - Bộ lọc thông giải

LWPF - Bộ lọc thông thấp

SWPF - Bộ lọc thông cao.

Độ rộng của kênh là 25 nm và 32 nm trong cửa sổ thứ nhất; 47 nm và 50 nm trong cửa sổ thứ hai của sợi quang. Suy hao xen là 1,4 dB cho bước sóng 0,89 m; 2,6 dB cho bước sóng 1,2 m; 2,2 dB cho bước sóng 1,3 m khi dùng Laser diode và 5,2 dB cho bước sóng 0,81 m khi dùng LED. Suy hao xuyên âm bằng -18 dB cho bước sóng ngắn dùng LED, còn nếu dùng Laser diode thì suy hao xuyên âm bằng -3,9 dB.

Một thí dụ khác của bộ MUX-DEMUX dùng gương cầu lõm như hình 2.11.



Các đầu sợi quang đặt trên mặt phẳng tiêu D. Gương cầu lõm A phản xạ bước sóng 0,825 m tới đầu ra. Gương cầu lõm B phản xạ bước sóng 0,870 m từ sợi chung vào và tới sợi ra. Gương cầu lõm C phản xạ bước sóng 1,3 m từ sợi chung vào và tới sợi ra khác. Suy hao xen và suy hao xuyên âm như bảng dưới đây:







0,825 m

0,870 m

1,3 m

Suy hao xen (dB)

0,4

0,75

1,3

Suy hao xuyên âm đầu gần (dB)




- 0,6

- 40

Suy hao xuyên âm đầu xa (dB)




- 78

- 120


I.2.Thiết bị WDM làm việc theo nguyên lý tán sắc góc.

Thiết bị WDM sử dụng bộ lọc màng mỏng không thích hợp cho hệ thống có quá nhiều bước sóng hoặc khi bước sóng này quá gần nhau. Trong trường hợp này phải sử dụng phần tử tán sắc góc. Ưu điểm của phần tử tán sắc góc là tán xạ đồng thời tất cả các bước sóng.


I.2.1. Dùng lăng kính làm phần tử tán sắc góc.

Trong giai đoạn đầu của kỹ thuật WDM người ta thường dùng lăng kính làm phần tử tán sắc góc (hình 2.12). Do hiện tượng chiết suất phụ thuộc vào bước sóng ánh sáng tức là n = n() nên chùm tia sáng có các bước sóng khác nhau ở đầu vào sẽ bị lăng kính phân thành các tia sáng đơn sắc khác nhau theo các hướng khác nhau ở đầu ra theo định luật Sneel (sự phụ thuộc của chiết suất vật liệu làm lăng kính theo bước sóng).



(2.1)

Với:


i là góc tới

i là góc ló

A là góc đỉnh của lăng kính

n là chiết suất vật liệu làm lăng kính.


Nhược điểm: tán sắc dùng lăng kính có mức độ tán sắc thấp, nên khó tách được các bước sóng gần nhau. Vì vậy người ta chỉ có thể dùng lăng kính trong trường hợp tách các bước sóng ở hai cửa sổ truyền dẫn khác nhau (ví dụ bước sóng 1 ở cửa sổ 1300 nm; bước sóng 2 ở cửa sổ 1550 nm). Do nhược điểm không tách được các tia sáng có bước sóng gần nhau nên lăng kính ngày nay không được sử dụng trong công nghệ WDM nữa, thay vào đó người ta sử dụng cách tử nhiễu xạ làm phần tử tán sắc góc.


I.2.2. Dùng cách tử làm phần tử tán sắc góc.

a. Mở đầu.

Cách tử được cấu tạo gồm nhiều rãnh (như răng cưa), được khắc bằng dụng cụ kim cương, trên bề mặt của các rãnh này được phủ một lớp phản xạ, số lượng rãnh trên cách tử có thể lên tới vài nghìn rãnh trên 1 mm. Cách tử có khả năng truyền hoặc tán xạ ánh sáng theo những hướng nhất định tuỳ thuộc vào bước sóng của ánh sáng đó. Góc tán xạ phụ thuộc vào khoảng cách rãnh (gọi là bước cách tử) và góc tới.



Cũng giống như lăng kính, ánh sáng không đơn sắc ở đầu vào, sau khi qua cách tử sẽ được tách thành các tia sáng đơn sắc ở đầu ra theo các góc khác nhau. Khác với lăng kính, cách tử nhiễu xạ cho các góc tán xạ lớn hơn.

Khi tách kênh (tách bước sóng) bằng cách tử, nguồn sáng tới gồm nhiều bước sóng từ sợi quang sẽ được tách ra thành các tia đơn sắc tương ứng với các bước sóng được truyền trên sợi theo các góc khác nhau. Ngược lại khi ghép kênh, một số kênh bước sóng 1, 2,....., n đến từ các hướng khác nhau có thể được kết hợp thành một hướng và được đưa tới truyền dẫn trên cùng một sợi quang.
b. Cách tử nhiễu xạ phẳng.

Xét hoạt động của một cách tử phẳng có rãnh răng cưa như hình 1.15:



Trong đó:

N - đường vuông góc với mặt đáy của cách tử

M - đường vuông góc với cạnh của rãnh

 - góc tới của tia sáng với N

- góc nhiễu xạ với N

i - góc tới của tia sáng với M

i - góc nhiễu xạ với M

d - chu kì cách tử

 - góc nghiêng của rãnh.

Từ hình 1.15 và theo kết quả chứng minh thì khi chiếu hai tia sáng vào rãnh cách tử sẽ tạo ra các tia nhiễu xạ cùng pha nếu hiệu số đường đi hai tia sáng thoả mãn điều kiện sau:

0 = d(sin + sin’) = k (2.2)

Với: k - số nguyên

 - bước sóng

d - chu kì cách tử

k = 0 ứng với truyền trực tiếp

k = 1 ứng với bậc 1 nhiễu xạ.

Nếu hệ số khúc xạ của môi trường bên ngoài cách tử là n thì (2.1) có dạng:

nd(sin + sin’) = k (2.3)

Cũng từ hình 1.15 ta có:

i =  - 

i’ = ’ - 

Theo quy tắc phản xạ thì góc tới bằng góc phản xạ, nghĩa là i = i’, rút ra:

 = ( + ’)/2 (2.4)

Công thức (2.1) có thể viết dưới dạng:

(2.5)

Hay (2.5’)

Đối với cách tử phản xạ thì  được tính theo điều kiện của Littrow (khi =’). Theo điều kiện này tìm được  ứng với tán xạ bậc 1 là:

1 = 2dsin (2.6)

Khi  ’

1 = 2dsincos (2.7)

Theo điều kiện Littrow và ứng với bậc 2 của tán xạ có:

2 = 2dsin (2.8)

n = sin (2.9)

Biên độ trường nhiễu xạ mặt bên của rãnh cách tử được xác định theo biểu thức:

A = (2.10)

Khi  = n thì cường độ nhiễu xạ cực đại và bằng:



(2.11)

Phân bố phổ của nhiễu xạ được xác định theo biểu thức:



(2.12)

Từ biểu thức trên, xây dựng đường cong phân bố phổ của năng lượng nhiễu xạ bậc một như hình 1.16 a). Trong trường hợp d nhỏ hơn bước sóng thì phân bố phổ của năng lượng nhiễu xạ phụ thuộc vào  và có dạng như hình 1.16 b).




c. Ứng dụng của cách tử nhiễu xạ phẳng.

Nói chung, các bộ ghép kênh hoặc tách kênh sử dụng cách tử bao gồm 3 phần chính: các phần tử vào và ra (là mảng sợi hoặc một sợi truyền dẫn với các thành phần thu - phát); phần tử hội tụ quang; phần tử tán sắc góc grating.

Hình 2.17 là cấu hình đơn giản của một bộ ghép kênh của Finke. Trong đó, mảng đầu sợi quang được đặt tại tiêu cự của một thấu kính tròn, phần tử tán sắc góc grating được đặt tại tiêu cự bên kia của thấu kính đó. Bộ tách kênh thực tế loại này đã thực hiện tách từ 4 đến 6 kênh với suy hao khoảng 1,2 đến 1,7 dB (triển vọng có thể tách được 10 kênh).

Trên hình 2.18 a) và 2.18 b) là bộ tách Littrow với a) là cấu trúc cơ bản còn b) là cấu trúc thực tế sử dụng lăng kính GRIN-rod của bộ tách 2 kênh.



Trên hình 2.19, đầu mảng các sợi quang được đặt trước một khe đã được quang khắc trên mặt cách tử phản xạ phẳng đặt vuông góc với các rãnh cách tử. Gương cầu lõm có tác dụng làm thay đổi hướng của bất kì một tia đa bước sóng phân kỳ nào thành một tia song song quay trở lại cách tử, tia này khi đến cách tử, sẽ bị tán sắc và phản xạ trở lại gương, phản xạ một lần nữa, tạo ảnh trên vùng mảng sợi quang tuỳ thuộc vào giá trị từng bước sóng. Cấu trúc này có hệ số hội tụ và truyền đạt bằng 1; vì vậy, hiệu suất ghép khá cao, đặc biệt nếu sử dụng gương parabol thì quang sai rất nhỏ, gần bằng 0.

Số lượng các kênh có thể ghép trong thiết bị phụ thuộc nhiều vào phổ của nguồn quang: từ năm 1993, đã có thể ghép được 6 kênh (đối với nguồn LED), 22 kênh (đối với nguồn Laser); nếu sử dụng kỹ thuật cắt phổ của nguồn phát LED để nâng cao số kênh ghép thì có thể ghép tới 49 kênh. Đối với nguồn đơn sắc, suy hao xen của thiết bị ghép rất nhỏ (< 2 dB), và có thể đạt đến 0,5 dB cho thiết bị đơn mode vùng bước sóng 1540 nm đến 1560 nm.


: nonghocbucket -> UploadDocument server07 id1 24230 nh42986 67215
UploadDocument server07 id1 24230 nh42986 67215 -> Công nghệ rfid giới thiệu chung
UploadDocument server07 id1 24230 nh42986 67215 -> MỤc lục danh mục các chữ viết tắt 3 Danh mục bảng biểu hình vẽ 4
UploadDocument server07 id1 24230 nh42986 67215 -> HỌc viện công nghệ BƯu chính viễn thông quản trị sản xuấT
UploadDocument server07 id1 24230 nh42986 67215 -> Báo cáo đánh giá tác động môi trường Dự án: Nhà máy sản xuất hạt nhựa 3h vina của công ty tnhh 3h vina
UploadDocument server07 id1 24230 nh42986 67215 -> ĐỀ 24 thi ngày 22/9
UploadDocument server07 id1 24230 nh42986 67215 -> ĐƯỜng lối ngoại giao củA ĐẢng trong cách mạng dân tộc dân chủ nhân dâN (1945-1954)
UploadDocument server07 id1 24230 nh42986 67215 -> Đồ án xử lý nước cấp Thiết kế hệ thống xử lý nước cho 2500 dân
UploadDocument server07 id1 24230 nh42986 67215 -> HiÖn nay gç rõng tù nhiªn ngµy cµng khan hiÕm mµ nhu cÇu sö dông gç ngµy cµng cao
UploadDocument server07 id1 24230 nh42986 67215 -> Câu 1: Những nội dung cơ bản trong Cương lĩnh chính trị đầu tiên của Đảng Công sản Việt Nam
UploadDocument server07 id1 24230 nh42986 67215 -> Lời nói đầu


1   2   3   4   5   6


Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2019
được sử dụng cho việc quản lý

    Quê hương