Laser Laser



tải về 93.83 Kb.
Chuyển đổi dữ liệu29.04.2018
Kích93.83 Kb.

Laser





   

    Laser là tên viết tắt của cụm từ Light Amplification by Stimulated Emission of Radiation trong tiếng Anh, và có nghĩa là "khuếch đại ánh sáng bằng phát xạ kích thích".



    Electron tồn tại ở các mức năng lượng riêng biệt trong một nguyên tử. Các mức năng lượng có thể hiểu là tương ứng với các quỹ đạo riêng biệt của electron xung quanh hạt nhân. Electron ở bên ngoài sẽ có mức năng lượng cao hơn những electron ở phía trong. Khi có sự tác động vật lý hay hóa học từ bên ngoài, các hạt electron này cũng có thể nhảy tử mức năng lượng thấp lên mức năng lượng cao hay ngược lại. Các quá trình này có thể sinh ra hay hấp thụ các tia sáng, theo giả thuyết của Albert Einstein. Bước sóng (do đó màu sắc) của tia sáng phụ thuộc vào sự chênh lệch năng lượng giữa các mức.

    Có nhiều loại laser khác nhau, có thể ở dạng hỗn hợp khí, ví dụ He-Ne, hay dạng chất lỏng, song có độ bức xạ lớn nhất vẫn là tia laser tạo bởi các thành phần từ trạng thái chất rắn.



    Cơ chế



Cấu tạo cơ bản và cơ chế hoạt động của laser.
1) vùng bị kích thích
2) năng lượng bơm vào vùng bị kích thích
3)
gương phản xạ toàn phần
4)
gương bán mạ
5) tia laser


Một ví dụ về cơ chế hoạt động của laser có thể được miêu tả cho laser thạch anh.

  • Dưới sự tác động của hiệu điện thế cao, các electron của thạch anh di chuyển từ mức năng lượng thấp lên cao.

  • Ở mức năng lượng cao, một số electron sẽ rơi ngẫu nhiên xuống mức năng lượng thấp, giải phóng hạt ánh sáng được gọi là photon.

  • Các hạt photon này sẽ toả ra nhiều hướng khác nhau từ một nguyên tử, va phải các nguyên tử khác, kích thích eletron ở các nguyên tử này rơi xuống tiếp, sinh thêm các photon cùng tần số, cùng pha và cùng hướng bay, tạo nên một phản ứng dây chuyền khuyếch đại dòng ánh sáng.

  • Các hạt photon bị phản xạ qua lại nhiều lần trong vật liệu, nhờ các gương để tăng hiệu suất khuếch đại ánh sáng.

  • Một số photon ra ngoài nhờ có gương bán mạ tại một đầu của vật liệu. Tia sáng đi ra chính là tia laser.

    Lịch sử

    Laser được phỏng theo maser, một thiết bị có cơ chế tương tự nhưng tạo ra tia vi sóng hơn là các bức xạ ánh sáng. Maser đầu tiên được tạo ra bởi Charles H. Townes và sinh viên tốt nghiệp J.P. Gordon và H.J. Zeiger vào năm 1953. Maser đầu tiên đó không tạo ra tia sóng một cách liên tục. Nikolay Gennadiyevich BasovAleksandr Mikhailovich Prokhorov của Liên bang Xô viết đã làm việc độc lập trên lĩnh vực lượng tử dao động và tạo ra hệ thống phóng tia liên tục bằng cách dùng nhiều hơn 2 mức năng lượng. Hệ thống đó có thể phóng ra tia liên tục mà không cho các hạt xuống mức năng lượng bình thường, vì thế vẫn giữ tầng suất. Năm 1964, Charles Townes, Nikolai Basov và Aleksandr Prokhorov cùng nhận giải thưởng Nobel vật lý về nền tảng cho lĩnh vực điện tử lượng tử, dẫn đến việc tạo ra máy dao động và phóng đại dựa trên thuyết maser-laser.



    Laser hồng ngọc, một laser chất rắn, được tạo ra lần đầu tiên vào năm 1960, bởi nhà vật lý Theodore Maiman tại phòng thí nghiệm Hughes Laboratory ở Malibu, California. Hồng ngọc là ôxít nhôm pha lẫn crôm. Crôm hấp thụ tia sáng màu xanh lá cây và xanh lục, để lại duy nhất tia sáng màu hồng phát ra.

    Robert N. Hall phát triển laser bán dẫn đầu tiên, hay laser diod, năm 1962. Thiết bị của Hall xây dựng trên hệ thống vật liệu gali-aseni và tạo ra tia có bước sóng 850 nanômét, gần vùng quang phổ tia hồng ngoại. Laser bán dẫn đầu tiên với tia phát ra có thể thấy được được trưng bày đầu tiên cùng năm đó. Năm 1970, Zhores Ivanovich Alferov của Liên Xô và Hayashi và Panish của Phòng thí nghiệm Bell đã độc lập phát triển laser diode hoạt động liên tục ở nhiệt độ trong phòng, sử dụng cấu trúc đa kết nối.

   

    Tính chất

    Ánh sáng laser gồm nhiều photon cùng một tần số (đơn sắc), đồng pha và bay gần như song song với nhau, nên có cường độ rất cao và chiều dài đồng pha của chùm sáng lớn. Tia laser thông dụng có thể có chiều dài đồng pha cỡ vài chục xentimét.

    Các tính chất này rất quý cho nhiều ứng dụng thực nghiệm. Tuy vậy cường độ sáng mạnh của laser có thể gây nguy hiểm cho sức khỏe con người, ví dụ như làm mù mắt.

    An toàn



    Laser với cường độ thấp, chỉ là vài miliwatt, cũng có thể nguy hiểm với mắt người. Tại bước sóng mà giác mạc mắtthủy tinh thể có thể tập trung tốt, nhờ tính đồng nhất và sự định hướng cao của laser, một công suất năng lượng lớn có thể tập trung vào một điểm cực nhỏ trên võng mắt. Kết quả là một vết cháy tập trung phá hủy các tế bào mắt vĩnh viễn trong vài giây, thậm chí có thể nhanh hơn. Độ an toàn của laser được xếp từ I đến IV. Với độ I, tia laser tương đối an toàn. Với độ IV, thậm chí chùm tia phân kỳ có thể làm hỏng mắt hay bỏng da. Các sản phẩm laser cho đồ dân dụng như máy chơi CDbút laser dùng trong lớp học được xếp hạng an toàn từ I, II, hay III. (Xem thêm an toàn laser)

    Ứng dụng của laser



 

    Vào thời điểm được phát minh 1960, laser được gọi là "giải pháp để tìm kiếm các ứng dụng". Từ đó, chúng trở nên phổ biến, tìm thấy hàng ngàn tiện ích trong các ứng dụng khác nhau trên mọi lĩnh vực của xã hội hiện đại, như phẫu thuật mắt, hướng dẫn phương tiện trong tàu không gian, trong các phản ứng hợp nhất hạt nhân... Laser được cho là một trong những phát minh ảnh hưởng nhất trong thế kỉ 20.

    Ích lợi của laser đối với các ứng dụng trong khoa học, công nghiệp, kinh doanh nằm ở tính đồng pha, đồng màu cao, khả năng đạt được cường độ sáng cực kì cao, hay sự hợp nhất của các yếu tố trên. Ví dụ, sự đồng pha của tia laser cho phép nó hội tụ tại một điểm có kích thước nhỏ nhất cho phép bởi giới hạn nhiễu xạ, chỉ rộng vài nanômét đối với laser dùng ánh sáng. Tính chất này cho phép laser có thể lưu trữ vài gigabyte thông tin trên các rãnh của DVD. Cũng là điều kiện cho phép laser với công suất nhỏ vẫn có thể tập trung cường độ sáng cao và dùng để cắt, đốt và có thể làm bốc hơi vật liệu trong kỹ thuật cắt bằng laser. Ví dụ, một laser Nd:YAG, sau quá trình nhân đôi tần số, phóng ra tia sáng xanh tại bước sóng 523 nm với công suất 10 W có khả năng, trên lý thuyết, đạt đến cường độ sáng hàng triệu W trên một cm vuông. Trong thực tế, thì sự tập trung hoàn toàn của tia laser trong giới hạn nhiễu xạ là rất khó. Xem thêm ứng dụng của laser để thêm chi tiết.

    Tia sáng laser với cường độ cao có thể cắt thép và các kim loại khác. Tia từ laser thường có độ phân kì rất nhỏ, (độ chuẩn trực cao). Độ chuẩn trực tuyệt đối là không thể tạo ra, bởi giới hạn nhiễu xạ. Tuy nhiên, tia laser có độ phân kỳ nhỏ hơn so với các nguồn sáng. Một tia laser được tạo từ laser He-Ne, nếu chiếu từ Trái Đất lên Mặt Trăng, sẽ tạo nên một hình tròn đường kính khoảng 1 dặm (1,6 kilômét). Một vài laser, đặc biệt là với laser bán dẫn, có với kích thước nhỏ dẫn đến hiệu ứng nhiễu xạ mạnh với độ phân kỳ cao. Tuy nhiên, các tia phân kỳ đó có thể chuyển đổi về tia chuẩn trục bằng các thấu kính hội tụ. Trái lại, ánh sáng không phải từ laser không thể làm cho chuẩn trực bằng các thiết bị quang học dễ dàng, vì chiều dài đồng pha ngắn hơn rất nhiều tia laser. Định luật nhiễu xạ không áp dụng khi laser được truyền trong các thiết bị dẫn sóng như sợi thủy tinh. Laser cường độ cao cũng tạo nên các hiệu ứng thú vị trong quang học phi tuyến tính.



(http://vi.wikipedia.org/wiki/Laser)

: upload -> soft
soft -> Test 10 Phonetics: Chọn từ mà phần gạch chân có cách phát âm khác với những từ còn lại
soft -> PHÒng giáo dục và ĐÀo tạO Độc lập Tự do Hạnh phúc
soft -> TRƯỜng trung hoc phổ thông chuyên lê quý ĐÔN
soft -> NHẰm giúp các học sinh hiểu rõ HƠn một số khái niệm cơ BẢn và CÁc cụm từ viết tắt trong đỊa lý
soft -> Ôn tập chủ ĐỀ ĐẠi số TỔ HỢp nhận xét
soft -> Một thuật toán nổi tiếng Euclide Thuật toán Euclide
soft -> Bài toán "đèn nhấp nháy"
soft -> TRƯỜng thpt tôn thất tùNG
soft -> Ubnd quận hải châu cộng hoà XÃ HỘi chủ nghĩa việt nam
soft -> MÔn lịch sử 10 Bài 29: CÁch mạng tư SẢn hà lan và CÁch mạng tư SẢn anh cách mạnh tư sản Anh




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2019
được sử dụng cho việc quản lý

    Quê hương