TRƯỜng đẠi học khoa học tự nhiên viện khoa học và CÔng nghệ việT NAM viện hoá HỌC



tải về 422.11 Kb.
trang6/6
Chuyển đổi dữ liệu27.07.2016
Kích422.11 Kb.
#7747
1   2   3   4   5   6



Hình 3.21. Đường đẳng nhiệt hấp phụ asen trên vật liệu NiFe2O4.

Sự hấp phụ asen bằng NiFe2O4 kích thước nanomet được mô tả khá tốt bằng mô hình đẳng nhiệt hấp phụ langmuir với hệ số hồi quy là 99,7 %. Dung lượng hấp phụ cực đại tính theo mô hình Langmuir đối với asen là 23,19 mg/g.



Một vài kết luận phần định hướng ứng dụng vật liệu NiO, NiFe2O4 kích thước nanomet:

(i). Trong phần nghiên cứu hoạt tính xúc tác oxi hoá VOCs có thể thấy vật liệu NiO, NiFe2O4 tổng hợp với kích thước nanomet có hoạt tính rất mạnh, các kết quả cũng chứng minh có sự oxi hoá hoàn toàn etanol ở 350oC tạo tiền đề cho các nghiên cứu tiếp theo để oxi hoá các VOCs độc hại khác.

(ii). Khảo sát khả năng hấp phụ của các vật liệu cho thấy vật liệu NiFe2O4 hấp phụ khá tốt As (III) 23,19 mg/g còn vật liệu NiO chỉ khoảng 4,3 mg/g.

KẾT LUẬN CHÍNH

Từ các kết quả nghiên cứu ở trên, có thể rút ra các kết quả chính của luận văn:

1. Bằng phương pháp đốt cháy gel PVA đã tổng hợp được 02 vật liệu oxit NiO và NiFe2O4 đơn pha, có độ kết tinh tốt ở nhiệt độ tổng hợp thấp (500 – 600oC), kích thước hạt nhỏ khoảng 20 – 30 nm, bề mặt riêng lớn khoảng 30 – 40 m2/g.

2. Các yếu tố ảnh hưởng đến sự tạo pha tinh thể của các oxit NiO và NiFe2O4 như pH, nhiệt độ nung, tỉ lệ KL/PVA, nhiệt độ tạo gel đã được nghiên cứu. Đối với pha NiO: nhiệt độ nung 600oC, pH tối ưu 4, nhiệt độ tạo gel tối ưu 80oC, tỉ lệ KL/PVA tối ưu tương ứng là 1/3. Đối với pha NiFe2O4: nhiệt độ nung 500oC, pH tối ưu 4, nhiệt độ tạo gel 60oC, tỉ lệ KL/PVA 1/3.

3. Hoạt tính xúc tác cho phản ứng oxi hoá hoàn toàn etanol đã được nghiên cứu trên vật liệu NiO và NiFe2O4. Sự oxi hoá hoàn toàn (độ chuyển hoá 100%) xảy ra ở nhiệt độ thấp (350oC). Trong hai oxit nghiên cứu, NiFe2O4 có hoạt tính xúc tác oxi hoá lớn hơn NiO.

4. Khả năng hấp phụ As (III) trong dung dịch đã được nghiên cứu trên 02 vật liệu hấp phụ chế tạo. Trong hai oxit được nghiên cứu, NiFe2O4 là chất có khả năng hấp phụ tương đối mạnh đối với asen (23,19 mg/g), NiO là chất hấp phụ yếu đối với asen (4,3 mg/g).



DANH MỤC CÁC CÔNG TRÌNH CỦA TÁC GIẢ

1. Lưu Minh Đại, Đào Ngọc Nhiệm, Vũ Thế Ninh, Phạm Ngọc Chức, “Tổng hợp spinen NiFe2O4 bằng phương pháp đốt cháy gel ở nhiệt độ thấp”, Tạp chí Hoá học, T. 46 (6), Tr. 675 – 680.

2. Lưu Minh Đại, Đào Ngọc Nhiệm, Phạm Ngọc Chức, Vũ Thế Ninh, “Tổng hợp NiO kích thước nanomet bằng phương pháp đốt cháy gel”, Tạp chí hoá học, T. 46 (5), Tr. 614 – 618.


TÀI LIỆU THAM KHẢO


TÀI LIỆU TIẾNG VIỆT

1. Nguyễn Đình Triệu (1999), Các phương pháp vật lí phân tích cấu trúc, NXBĐHQGHN.

2. Vũ Đình Cự, Nguyễn Xuân Chánh (2004), Công nghệ nano điều khiển đến từng phân tử, nguyên tử, NXBKH  KT.

3. Trịnh Hân (2003), Hướng dẫn thực tập tinh thể học và hoá học tinh thể, NXB ĐHQGHN.

4. Phạm Nguyên Chương, Trần Hồng Côn, Nguyễn Văn Nội, Hoa Hữu Thu, Nguyễn Diễm Trang, Hà Sỹ Uyên, Phạm Hùng Việt. Hoá kỹ thuật, Nxb KHKT, 2002.

5. Trần Văn Nhân, Nguyễn Thạc Sửu, Nguyễn Văn Tuế.Giáo trình hoá lý, Tập II, Nxb GD.

6. Nguỵ Hữu Tâm (2004), Công nghệ nano hiện trạng, thách thức và những siêu ý tưởng, NXBKHKT.

7. Phan Văn Tường (1998), Vật liệu vô cơ, ĐHKHTN-ĐHQGHN .

8. Phan Văn Tường (2004), Các phương pháp tổng hợp vật liệu gốm, ĐHKHTN-ĐHQGHN.

9. Nguyễn Hữu Phú (2000), Giáo trình hoá lý, Nhà xuất bản Khoa học và Kỹ thuật, Hà Nội.

TÀI LIỆU TIẾNG ANH

0. McGraw-Hill (1997) Encyclopedia of Science and Technology, 8th edition.

11. G.B.Sergeev, Utxpekhi khimii (2001), 70(10), p. 915-933.

12. K.J. Klabunde (1994), Free Atoms, Clusters and Nanoparticles, Academic Press, San Diego.

13. C. Wang, A. Cui, Z. Deng (2001), “Preparation of Cuprous oxide particles of different crystallinit”, Journal of Colloid and Interface Science, Vol. 243, p. 85-92.

14. B. Balamurugan, B. R. Mehta (2001), “Optical and structural properties of nanocystalline copper oxide thin films prepared by actived reactive evaporation”, Thin solid films, Vol. 396, p. 90-96.

15. F.C. Meldrum et al (1991), “Synthesis of inorganic nanophase materials in supramolecular protein cages”, Nature, Vol. 394, p. 684-687.

16. J.C. Miller (2005), The handbook of nanotechnology, Wiley VCH, p. 26.

7. R. Smalley (1992), “Congressional Hearing”, Sol. Energy Mater. Sol. Cells, Vol. 27, p. 361.

8. T. Boronina, K.J. Klabunde, G. Sergeev (1995), “Destruction of Organohalides in Water Using Metal Particles: Carbon Tetrachloride/Water Reactions with Magnesium, Tin, and Zinc”, Environ. Sci. Technol., Vol. 29, p. 1511-1517.

9. E.M. Lucas and K.J. Klabunde (1999), Nanocrystals as destructive absorbants for mimcs of chemical warfare agents, Nanostructured Materials, Vol. 12, p. 179-182.

20. M. McGehee, Stanford Univ (2003), Organic and Polymericphotovollatic Cells, Presented at NSF Organic, available at http://www. mrc.utexas.edu/.

21. L. Schlapbach and A. Züttel (2001), “Hydrogen-storage Materials for mobile applications”, Nature, Vol. 414, p. 353-358.

22. Chakravorty D. (2001), Nanomaterials, New Dehi, pp. 47 – 70.

23. Merzhanov A. G. (1993), “Theory and Practice of SHS: Worldwide State of the Art and the Newest Results”, Int. J. SHS, 2 (2), pp. 113 – 158.

24. Merzhanov A. G. (1993), “Chemistry of advanced materials”, Ed. By CNR Rao, Blackwell Sciencetific Puplications, Oxford.

25. Adriana Silva de Albuquerquea, et al (1999), “Structure and magnetic Properties of Granular Ni - Zn - ferrite - SiO2 “, Materials Research, 2 (3), 235 – 238.

26. L.A. Garcwoa Cerd, et al (2005), “Synthesis of CoFe2O4 nanoparticles embedded in a silica matrix by the citrate precursor technique “, Journal of Magnetic and Magnetic Materials

27. Yongie Zhan, Changlin Zheng, Yingkai Liu, Guanghou Wang “Synthesis of NiO nanowires by an oxidation route”, Materials Letters, 57, pp. 3266 – 3267.

28. Ying Wu, Yiming He, Tinghua Wu, Weizheng Weng, Huilin Wan (2007) “Effect of synthesis method on the physical and catalytic property of nanosized NiO”, Materials letters 61, pp. 2679 – 2682.

29. E.A. Souza, J.G.S. Duque, L. Kubota, C.T. Meneses (2007) “Synthesis and characterization of NiO and NiFe2O4 nanoparticles obtained by a sucrose – based route”, Journal of Physics and Chemistry of Solids 68, pp. 594 – 599.

30. Lili Wu, Youshi Wu, Huiying Wei, Yuanchang Shi, Chuunxia Hu (2004), “Synthesis and characteristics of NiO nanowire by a solution method”, materials letters 58, pp. 2700 – 2708.

31. Mathew Georgea, Asha Mary John, Swapn S. Nair, P.A. Joy, M.R. Anantharamana (2006) “Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders”, Journal of Magnetism and Magnetic Materials, pp. 190 – 195.

32. L. Satyanarayana, K. Madhusudan Reddy, Sunkara V. Manorama (2003), “Nanosized spinel NiFe2O4: A novel material for the detection

of liquefied petroleum gas in air”. Materials Chemistry and Physics 82, pp. 21 – 26.



33. J. Azadmanjiri, S.A. Seyyed Ebrahimi, H.K. Salehani (2007), “Magnetic properties of nanosize NiFe2O4 particles

synthesized by sol–gel auto combustion method”. Ceramics International 33, pp. 1623 – 1625.



34. A.S. Albuquerque, et al (2001), “Structure and magnetic properties of nanostructured Ni-ferite’’, Journal of Magnetic Materials, pp 1379- 1381.

35. Chu Xiangfeng, Jiang Dongli, Zheng Chenmou (2007), “The preparation and gas-sensing properties of NiFe2O4 nanocubes and nanorods”, Sensors and Actuators B 123, pp. 793 – 797.

36. P.T.A. Santos, A.C.F.M. Costa, R.H.G.A. Kiminami, H.M.C. Andrade, H.L. Lira, L. Gama (2009), ‘‘Synthesis of a NiFe2O4 catalyst for the preferential oxidation of carbon monoxide (PROX)’’ Journal of Alloys and Compounds 483, pp. 339 – 401.

37. Hongxia Wang, Wei Zhang, Faling Zhang, Yuan Cao, Wenhui Su, (2008), “The effect of 3-aminopropyltrimethoxysilane on the formation of

NiFe2O4/SiO2 nanocomposites”, Journal of Magnetism and Magnetic Materials 320, pp. 1916 – 1920.



38. Changsheng Ding, Hongfei Lin, Kazuhisa Sato,and Toshiyuki Hashida (2009), “Synthesis of NiO–Ce0.9Gd0.1O1.95 nanocomposite powders for low-temperature solid oxide fuel cell anodes by co-precipitation”, Scripta Materialia 60. pp. 254 – 256.

39. Yi-Mu Lee, Chun-Hung Lai (2009), “Preparation and characterization of solid n-TiO2/p-NiO hetrojunction electrodes for all-solid-state dye-sensitized solar cells”, Solid-State Electronics 53, pp. 1115 – 1125.

40. Jun Miki, Minoru Asanuma, Yakudo Tachibana, Tsutomu Shikada (1996), “A highly effective countermeasure for the deactivation of the NiO-NiFe204-Na20 catalyst for phenol synthesis”, Applied Catalysis A: General 143, pp. 215 – 222.

41. V.R. Choudhary, A.S. Mamman (1999), “Oxidative conversion of methane to syngas over NiOrMgO solid solution supported on low surface area catalyst carrier”, Fuel Processing Technology 60, pp. 201 – 211.

42. Tobias Mattisson, Marcus Johansson, Anders Lyngfelt (2006), “The use of NiO as an oxygen carrier in chemical-looping combustion”, Fuel 85, pp.736 – 747.

43. Erik Jerndal, Tobias Mattisson, Ivo Thijs, Frans Snijkers, Anders Lyngfelt (2009), “NiO particles with Ca and Mg based additives produced by spraydrying as oxygen carriers for chemical-looping combustion”, Energy Procedia 1, pp. 479 – 486.


tải về 422.11 Kb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5   6




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương