TIÊu chuẩn quốc gia tcvn 9399: 2012


Phụ lục A (Tham khảo) Sơ đồ cấu tạo mốc cơ sở (mốc chuẩn) đo chuyển dịch ngang



tải về 399.83 Kb.
trang2/3
Chuyển đổi dữ liệu06.08.2016
Kích399.83 Kb.
#14217
1   2   3

Phụ lục A

(Tham khảo)



Sơ đồ cấu tạo mốc cơ sở (mốc chuẩn) đo chuyển dịch ngang

(Kích thước tính bằng milimét)



CHÚ DẪN:


1. Ốc điều chỉnh mốc

2. Bê tông dầy 500

3. Ống kim loại đường kính 60

4. Lớp đệm thân ống dầy 200

5. Ống bảo vệ đường kính 110

6. Lớp đệm mặt ống dầy 200

7. Dấu mốc bằng đồng đường kính 25 có khắc dấu chữ thập dài 60

8. Nắp bảo vệ đường kính 200, cao 100

9. Tường gạch bảo vệ 600 x 600 x 600

Hình A.1 - Cấu tạo loại mốc nổi

(kích thước tính bằng milimét)

CHÚ DẪN:


1. Nắp bảo vệ bê tông 600 x 600 x 100

2. Tâm mốc bằng đồng đường kính 2,5 có khắc dấu chữ thập dài 60

3. Ốc điều chỉnh

4. Ốc điều chỉnh

5. Lớp cách nhiệt rắn dầy 100, cao 800

6. Lớp bê tông dầy 200

7. Ống kim loại đường kính 80

8. Chất lỏng cách nhiệt

Hình A.2 - Cấu tạo loại mốc chìm

(Kích thước tính bằng milimét)



CHÚ DẪN: Trụ bê tông 300 x 300 x 1000

Hình A.3 - Cấu tạo loại mốc định tâm bắt buộc
Phụ lục B

(Tham khảo)



Sơ đồ cấu tạo mốc đo chuyển dịch ngang

(Kích thước tính bằng milimét)



Hình B.1 - Cấu tạo loại mốc gắn vào công trình

(Kích thước tính bằng milimét)

Hình B.2 - Cấu tạo loại mốc gắn vào công trình có bản le quay

(Kích thước tính bằng milimét)

Hình B.3 - Cấu tạo loại mốc gắn vào nền, móng công trình


Phụ lục C

(Tham khảo)

Tiêu chuẩn đánh giá độ ổn định của các mốc cơ sở khi quan trắc chuyển dịch ngang công trình

Lưới khống chế trong quan trắc chuyển dịch là mạng lưới độc lập, được tiến hành đo lặp trong các chu kỳ quan trắc. Các mạng lưới này thông thường được xây dựng thành hai bậc; bậc một là lưới khống chế cơ sở và bậc hai là lưới quan trắc. Như vậy tọa độ các điểm mốc của lưới khống chế cơ sở là số liệu gốc cho việc tính toán và đánh giá độ chuyển dịch của các điểm kiểm tra được gắn trên công trình cần theo dõi và nếu chỉ cần một trong các mốc này bị chuyển dịch vị trí sẽ làm sai lệch vị trí các mốc quan trắc và tất nhiên điều này sẽ ảnh hưởng đến các kết quả đánh giá độ chuyển dịch của công trình. Do vậy các điểm khống chế cơ sở cần được bố trí tại những nơi có điều kiện địa chất ổn định, nằm ngoài phạm vi chịu tác động của sự chuyển dịch công trình và đặc biệt phải có độ ổn định cao trong suốt quá trình quan trắc. Công việc kiểm tra, đánh giá ổn định của hệ thống mốc cơ sở trong quan trắc chuyển dịch công trình có vai trò rất quan trọng và quyết định tới độ tin cậy của toàn bộ các kết quả quan trắc. Kết quả của công việc này là xác định được những mốc ổn định và những mốc có độ chuyển dịch lớn hơn giá trị cho phép để loại chúng ra khỏi số liệu gốc. Để có kết luận đúng đắn về vấn đề này cần đưa ra tiêu chuẩn về độ ổn định cho các mốc của lưới khống chế cơ sở. Sai số vị trí điểm của mốc khống chế trong bậc thứ i của lưới được tính theo công thức:



trong đó:

Mi là sai số trung phương vị trí điểm của mốc khống chế bậc thứ i;

Moi là sai số tổng hợp của lưới bậc thứ i;

K là hệ số giảm độ chính xác của lưới.

Đối với trường hợp lưới khống chế cơ sở và lưới quan trắc chuyển dịch có hai bậc, tức n = 2. Mặt khác trong lưới quan trắc độ chuyển dịch các công trình thủy lợi, thủy điện thông thường các mốc quan trắc được tiến hành xác định theo phương pháp giao hội góc - cạnh, và nếu lấy sai số đo góc m = 2,0", sai số đo cạnh ms = 2+1 ppm, ta có M trong khoảng 2,2 mm đến 2,5 mm. Thay M= 2,30 mm và K = 2 vào công thức (C.1), tính được sai số trung phương vị trí điểm khống chế của lưới cơ sở MQi = 1,03 mm. Những điểm khống chế của lưới được coi là ổn định nếu chênh lệch tọa độ của chúng ở chu kỳ đang xét so với chu kỳ đầu tiên không vượt quá sai số giới hạn xác định độ chênh lệch đó, cụ thể phải thoả mãn điều kiện:



trong đó:

Qi là giá trị chênh lệch tọa độ của điểm khống chế giữa chu kỳ đang xét n và chu kỳ đầu tiên được tính theo công thức:

t là hệ số chuyển đổi từ sai số trung phương sang sai số giới hạn, thường lấy t = 3. Lúc đó điều kiện (C.2) sẽ là:



Những điểm khống chế lưới cơ sở thoả mãn điều kiện (C.3) thì chúng được coi là ổn định.


Phụ lục D

(Tham khảo)



Các phương pháp đo hướng chuẩn

D.1 Phương pháp đo hướng chuẩn toàn phần

D.1.1 Sơ đồ đo hướng chuẩn toàn phần (Hình D.1)

Hình D.1 - Sơ đồ đo hướng chuẩn toàn phần

D.1.2 Phương pháp đo: Đặt máy tại điểm I, định hướng về điểm II và lần lượt đo độ lệch hướng của các điểm kiểm tra 1, 2, 3, ... n. Đo ở hai vị trí bàn độ trái và phải. Sau đó đo theo chiều ngược lại bằng cách đặt máy tại điểm II định hướng về điểm I và tiến hành đo độ lệch hướng của các điểm kiểm tra như khi đo chiều thuận.

D.1.3 Độ chính xác của phương pháp đo hướng chuẩn toàn phần: công thức chung để tính sai số trung phương độ lệch hướng của điểm i là:



trong đó


mc là sai số đo trong phương pháp đo góc nhỏ hoặc trong phương pháp bảng ngắm di động. Trọng số của yi khi đo lần thuận (đo đi) được tính theo công thức:

Trọng số của y'i khi đo lần ngược chiều (đo về) được tính:



Trị trung bình của độ lệch hướng của điểm i được tính theo công thức:



Trọng số của trị trung bình:



Sai số trung phương của trị trung bình:



Trong các công thức trên  có thể lấy bằng.

D.2 Phương pháp đo hướng chuẩn từng phần

D.2.1 Sơ đồ đo hướng chuẩn từng phần (Hình D.2)



Hình D.2 - Sơ đồ đo hướng chuẩn từng phần

D.2.2 Phương pháp đo

Hướng chuẩn I đến II được chia làm nhiều phần và tiến hành đo như sau:

a) Đo đi:

- Định hướng I đến II, đo điểm 4;

- Định hướng I đến 4, đo điểm 2;

- Định hướng II đến 4, đo điểm 6;

- Định hướng I đến 2, đo điểm 1;

- Định hướng 2 đến 4, đo điểm 3;

- Định hướng 4 đến 6, đo điểm 5;

- Định hướng 6 đến II, đo điểm 7.

b) Đo về:

- Đặt máy tại điểm II, định hướng về I và theo tuần tự ngược lại với đo đi, lần lượt đo các điểm 4, 6, 2, 7, 5, 3, 1.

D.2.3 Tính độ lệch hướng

Độ lệch hướng y1 của các điểm kiểm tra so với hướng chuẩn I, II được tính qua các đại lượng đo qi.



Độ chính xác của phương pháp đo hướng chuẩn từng phần: Nếu khoảng cách giữa các điểm kiểm tra bằng nhau và ký hiệu:



thì sai số trung phương độ lệch hướng theo một chiều đo đi hoặc đo về được tính theo công thức:





Sai số trung phương của trị trung bình độ lệch hướng đo đi và đo về của các điểm kiểm tra sẽ nhỏ hơn lần so với các giá trị trong các công thức trên.

D.3 Phương pháp hướng chuẩn nhích dần

D.3.1 Sơ đồ đo hướng chuẩn nhích dần (Hình D.3)



Hình D.3 - Sơ đồ đo hướng chuẩn nhích dần

D.3.2 Trình tự đo hướng chuẩn nhích dần

a) Đo đi:

- Đặt máy tại điểm I, định hướng về II, đo điểm 1;

- Đặt máy tại 1, định hướng về II, đo điểm 2;

- Đặt máy tại 2, định hướng về II, đo điểm 3;

...


- Tiếp tục đo nhích dần đến điểm đo cuối cùng.

b) Đo về:

- Đặt máy tại điểm II, định hướng về điểm I, đo điểm 7;

- Đặt máy tại điểm 7, định hướng về điểm I, đo điểm 6;

...

- Tiếp tục đo nhích dần về điểm đầu.



D.3.3 Tính độ lệch hướng theo phương pháp hướng chuẩn nhích dần

a) Đo đi:

y1 = q1

b) Đo về:



Nếu khoảng cách giữa các điểm kiểm tra bằng nhau thì có thể coi sai số mq là không đổi:



trong đó:

n là số đoạn trên toàn hướng I đến II.

D.3.4 Độ chính xác của phương pháp hướng chuẩn nhích dần

Công thức tổng quát để tính sai số trung phương của độ lệch hướng của điểm i:

a) Đo đi:



b) Đo về:



trong đó:

i là số hiệu của điểm;

k là số hiệu của trị đo q (k bằng 1, 2, ... (n-1));

n là số đoạn trên toàn hướng chuẩn;

Sai số trung phương của trị trung bình được tính:



D.4 Phương pháp đo hướng chuẩn chéo nhau

D.4.1 Sơ đồ đo hướng chuẩn chéo nhau (Hình D.4)

Hình D.4 - Sơ đồ hướng chuẩn chéo nhau

D.4.2 Trình tự đo hướng chuẩn chéo nhau

a) Đo đi:

- Đặt máy tại điểm I, định hướng về 2 đo độ lệch q1 so với hướng I-2;

- Đặt máy tại 1, định hướng về 3, đo độ lệch q2 so với hướng I-3;

- Đặt máy tại điểm 2, định hướng về 4, đo độ lệch q3 so với hướng 2-4;

Tiếp tục làm như vậy cho đến khi đo độ lệch q7 so với hướng 6-II.

b) Đo về:

- Đặt máy tại điểm II, định hướng về 6 đo độ lệch q7 so với hướng II-6;

- Đặt máy tại điểm 7, định hướng về 5 đo độ lệch q8 so với hướng 7-5;

Tiếp tục làm tương tự như vậy đến khi đo độ lệch q1 so với hướng 2-I.

D.4.3 Tính độ lệch hướng: Việc tính độ chuyển dịch ngang theo phương pháp hướng chéo nhau được tiến hành tương tự như tính đường chuyền phù hợp giữa 2 điểm I và II, không đo góc nối. Các góc ngoặt i được tính:

Hoặc:


Chọn hệ tọa độ giả định có điểm gốc trùng với điểm I, trục X' trùng với I -1.

Tính góc phương vị của các cạnh trong hệ tọa độ này:

Tính y'i của các điểm:



Tính phương vị của hướng chuẩn I-II trong hệ tọa độ x' I y':



từ đó suy ra: ’I.II = , chuyển lại về hệ tọa độ XIY (trục X trùng với trục I - II). Tính lại các


phương vị:

Tính yi của các điểm trong hệ tọa độ XIY:



Kiểm tra:



D.4.4 Độ chính xác của sơ đồ hướng chuẩn chéo nhau: Từ công thức (D.15) ta có



Vì:


Nên:


Khi li xấp xỉ li+1 thì:

mi = 2mc (D.22)

Như vậy, khi không bình sai đường chuyền duỗi thẳng, sai số trung phương của độ lệch hướng của điểm i được tính theo công thức:



Hoặc:


trong đó:

n là số đoạn trên toàn tuyến hướng chuẩn. Theo công thức (D.24) thì myi có giá trị nhỏ nhất khi i = 1; và myi có giá trị lớn nhất khi i = n -1.
Phụ lục E

(Tham khảo)



Ví dụ về phân tích độ chính xác đo góc và đo cạnh khi đo chuyển dịch ngang bằng phương pháp đường chuyền

Tính độ chính xác đo góc và đo cạnh đường chuyền có chiều dài là 500 m; số lượng cạnh n = 5 và chiều dài các cạnh là 100 m.

Nếu sai số cho phép xác định đại lượng chuyển dịch là 2 mm thì theo nguyên tắc ảnh hưởng bằng nhau sẽ tính được md theo công thức:

Sau khi bình sai tọa độ, sai số hướng dọc của điểm giữa tuyến đa giác là:



từ đó, sai số trung phương đo cạnh là:



Sai số hướng ngang của điểm giữa tuyến đa giác sau khi bình sai tọa độ:



Từ đó, sai số trung phương đo góc:



Trong trường hợp tại điểm đầu và điểm cuối tuyến đường chuyền có đo góc liên hệ với độ chính xác rất cao thì sau khi bình sai tọa độ và phương vị, ta có:



từ đó tính được: m = 2",7


Phụ lục F

(Tham khảo)



So sánh độ chính xác của các phương án lập lưới quan trắc chuyển dịch ngang bằng phương pháp giao hội

Giả sử có một mạng lưới quan trắc chuyển dịch ngang nhà máy thủy điện được cho ở Hình F.1, mạng lưới này được thể hiện theo ba phương án:

- Phương án 1: Đo theo đồ hình lưới giao hội góc. Từ các mốc cơ sở QT1 đến QT5 tiến hành đo góc đến các điểm kiểm tra M1, M2, M3, M4 (trung bình mỗi điểm kiểm tra được xác định bằng giao hội góc từ 4 hướng), sai số đo góc giả định là m = 2,0".

- Phương án 2: Đo theo đồ hình lưới giao hội cạnh. Theo sơ đồ này, đặt máy tại các điểm cơ sở QT1 đến QT5 đo chiều dài cạnh đến các điểm kiểm tra gắn trên công trình M1, M2, M3, M4, độ chính xác đo cạnh giả định là ms =2+1 ppm.

- Phương án 3: Đo theo đồ hình lưới giao hội góc - cạnh. Từ các mốc cơ sở QT1 đến QT5 đo các góc và cạnh đến các điểm kiểm tra M, M1, M2, M3, M4. Độ chính xác đo góc giả định là m = 2,0", sai số đo cạnh ms = 2 +1 ppm.

Kết quả tính sai số vị trí điểm theo ba phương án được nêu ở Bảng F.1



Hình F.1 - Sơ đồ lưới quan trắc chuyển dịch ngang nhà máy thủy điện

Bảng F.1 - Sai số vị trí điểm tính theo ba phương án giao hội

Số TT

Tên điểm

Sai số vị trí điểm

mm


Phương án giao hội góc

Phương án giao hội cạnh

Phương án giao hội góc cạnh

1

M1

6,6

3,9

2,3

2

M2

6,3

3,3

2,4

3

M3

7,2

3,6

2,5

4

M4

6,3

3,2

2,2

Phương án giao hội góc có độ chính xác kém hơn hẳn phương án giao hội cạnh và giao hội góc - cạnh. Ngoài ra công tác đo góc trong lưới với độ chính xác m = 2,0" sẽ mất nhiều thời gian hơn so với công tác đo cạnh bằng máy toàn đạc điện tử . Với các máy toàn đạc điện tử độ chính xác cao hiện nay như TC 1700, TC 2003... có độ chính xác đo cạnh cỡ từ 1 mm đến 2 mm, có thể cho phép xây dựng mạng lưới quan trắc chuyển dịch ngang theo đồ hình giao hội đo toàn cạnh. Phương án này vừa đảm bảo yêu cầu độ chính xác cao vừa có lợi về mặt kinh tế.
Phụ lục G

(Tham khảo)



Kết quả tính bình sai đánh giá độ ổn định của các mốc cơ sở và tính tọa độ các điểm kiểm tra chuyển dịch ngang tuyến đập

G.1 Sơ đồ mạng lưới quan trắc chuyển dịch ngang tuyến đập



Hình G.1 - Sơ đồ mạng lưới quan trắc chuyển dịch ngang tuyến đập

G.2 Kết quả tính bình sai mạng lưới khống chế mặt bằng để đánh giá độ ổn định của các mốc cơ sở (chu kỳ 12)

G.2.1 Chỉ tiêu kỹ thuật của lưới

Tổng số điểm: 7;

Số lượng góc: 28;

Số lượng cạnh: 17;

Sai số đo góc: 1,0";

Sai số đo cạnh: 1+1 ppm.

G.2.2 Số liệu khởi tính

Các số liệu khởi tính được nêu ở Bảng G.1.

Bảng G.1 - Các số liệu khởi tính mạng lưới khống chế mặt bằng



Số TT

Tên điểm

Tọa độ

X

m


Y

m


1

QT10

1 574 036,440 4

805 473,478 7

2

QT2

1 574 554,498 0

805 200,071 8

3

QT3

1 574 814,602 9

805 458,723 3

4

QT4

1 575 256,501 6

805 633,131 8

5

QT5

1 575 472,387 9

805 858,832 1

6

QT9

1 574 191,312 8

805 794,865 5

G.2.3 Kết quả tính tọa độ các điểm của lưới khống chế

Kết quả tính tọa độ các điểm của lưới khống chế được nêu ở Bảng G.2.

Bảng G.2 - Kết quả tính tọa độ các điểm của lưới khống chế mặt bằng

Số TT

Tên điểm

Tọa độ

Sai số vị trí

(mm)


X

m


Y

m


Mx

My

Mp

1

QT10

1 574 036,440 4

805 473,4793

0,6

0,6

0,8

2

QT2

1 574 554,496 8

805 200,0706

0,6

0,7

0,9

3

QT3

1 574 814,602 8

805 458,7203

0,6

0,7

0,9

4

QT4

1 575 256,501 0

805 633,1298

0,

1,0

1,2

5

QT5

1 575 472,389 9

805 858,8339

1,1

1,2

1,7

6

QT8

1 574 507,872 2

807 688,7450

2,9

1,3

3,2

7

QT9

1 574 191,312 6

805 794,8642

0,6

0,5

0,8

G.2.4 Độ ổn định của các mốc cơ sở mặt bằng

Độ ổn định của các mốc cơ sở mặt bằng được đánh giá theo Bảng G.3.

Bảng G.3 - Đánh giá độ lệch tọa độ điểm và độ ổn định của các mốc cơ sở

Số TT

Tên điểm

Độ lệch tọa độ

mm


Đánh giá

QX

QY

Q

ổn định

1

QT10

0,0

0,6

0,6

ổn định

2

QT2

-1,2

-1,2

1,7

ổn định

3

QT3

-0,1

2,0

2,1

ổn định

4

QT4

-0,6

-2,0

2,1

ổn định

5

QT5

-2,0

1,8

2,7

ổn định

6

QT9

-0,2

-1,3

1,3

ổn định

7

QT9

3,1

-2,9

4,3

Không ổn định

Kết quả đánh giá độ chính xác mạng lưới:

+ Sai số trọng số đơn vị M = 0,83";

+ Điểm yếu nhất là QT8; mp = 0,003 18 m.

Sử dụng các điểm cơ sở ổn định để tính bình sai mạng lưới các điểm kiểm tra từ M1 đến M30.

G.3 Kết quả tính bình sai để tiến hành tính toạ độ của các điểm kiểm tra chuyển dịch ngang của tuyến đập (chu kỳ 12)

- Chỉ tiêu kỹ thuật của lưới:

+ Tổng số điểm: 14;

+ Số điểm gốc: 06;

+ Số điểm mới: 08;

+ Sai số đo góc: 2,0";

+ Sai số đo cạnh: 1 + 1 ppm.

- Số liệu khởi tính: Số liệu khởi tính tọa độ các điểm kiểm tra chuyển dịch ngang của tuyến đập được nêu ở Bảng G.4.

- Kết quả tọa độ sau bình của các điểm kiểm tra chuyển dịch ngang của đập (chu kỳ 12) được nêu ở Bảng G.5.

- Kết quả đánh giá độ chính xác của lưới:

+ Sai số trọng số đơn vị M = 1,69";

+ Điểm yếu nhất là điểm M29; mp = 0,002 13 m.

Bảng G.4 - Các số liệu khởi tính tọa độ các điểm kiểm tra

Số TT

Tên điểm

Tọa độ

X

m


Y

m


1

QT2

1 574 554,496 8

805 200.070 6

2

QT3

1 574 814,602 8

805 458.720 3

3

QT4

1 575 256,501 0

805 633.129 8

4

QT5

1 575 472,389 9

805 858,833 9

5

QT9

1 574 191,312 6

805 794,864 2

6

QT10

1 574 036,440 4

805 473,479 3

Bảng G.5 - Kết quả tọa độ sau bình của các điểm kiểm tra chuyển dịch ngang tuyến đập

Số TT

Tên điểm

Tọa độ

Sai số vị trí, mm

X

m


Y

m


Mx

My

Mp

1

M1

1 575 262,082 9

806 058,818 9

0,9

0,8

1,2

2

M5

1 575 140,064 2

806 119,406 9

1,0

0,8

1,2

3

M9

1 575 002,834 4

806 129,131 5

1,0

0,8

1,3

4

M13

1 574 865,066 9

806 080,311 0

0,9

0,9

1,2

5

M17

1 574 736,874 5

806 962,929 9

0,8

0,9

1,2

6

M21

1 574 674,355 6

805 897,946 9

0,7

0,8

1,1

7

M25

1 574 577,540 2

805 807,711 6

0,9

1,1

1,4

8

M30

1 574 458,278 7

805 785,204 3

0,9

1,1

1,4



tải về 399.83 Kb.

Chia sẻ với bạn bè của bạn:
1   2   3




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương