TIÊu chuẩn quốc gia tcvn 9386: 2012


Loại kết cấu và hệ số ứng xử



tải về 2.76 Mb.
trang9/34
Chuyển đổi dữ liệu19.07.2016
Kích2.76 Mb.
#2091
1   ...   5   6   7   8   9   10   11   12   ...   34

5.2.2. Loại kết cấu và hệ số ứng xử

5.2.2.1. Loại kết cấu

(1)P Kết cấu bêtông, tùy theo sự ứng xử của chúng dưới các tác động động đất theo phương ngang, được phân thành một trong những loại kết cấu sau đây (xem 5.1.2).

- Hệ khung;

- Hệ kết cấu hỗn hợp (tương đương khung hoặc tương đương tường);

- Hệ tường có tính dẻo kết cấu (tường kép hoặc không phải tường kép);

- Hệ tường kích thước lớn ít cốt thép;

- Hệ con lắc ngược;

- Hệ dễ xoắn.

(2) Trừ những loại kết cấu được coi là hệ dễ xoắn kết cấu bêtông có thể được phân thành một loại kết cấu theo một phương ngang này và thành một loại hệ kết cấu khác theo một phương ngang khác.

(3)P Hệ tường được coi là hệ tường kích thước lớn ít cốt thép nếu, trong phương ngang đang xét có ít nhất hai tường với kích thước ngang không nhỏ hơn giá trị nhỏ nhất của hai giá trị 4 m và 2hw/3 mà khả năng chịu lực đồng thời của chúng ít nhất bằng 20 % tổng trọng lực từ bên trên trong tình huống thiết kế chịu động đất và có chu kỳ cơ bản T1 nhỏ hơn hoặc bằng 0,5s, với giả thiết ngàm tại chân đế để chống xoay. Trường hợp chỉ có một tường thỏa mãn điều kiện trên ở một trong hai phương cũng coi là đủ đạt tiêu chí này, miễn là: (a) giá trị cơ bản của hệ số ứng xử, q0, trong phương đó lấy theo các giá trị đã cho trong Bảng 5.1 được chia cho một hệ số bằng 1,5 và (b) có ít nhất hai tường thỏa mãn các điều kiện trên trong phương vuông góc.

(4)P Bốn loại hệ kết cấu đầu tiên (tức là khung, hệ kết cấu hỗn hợp, các hệ tường thuộc cả hai loại: tường có tính dẻo kết cấu và tường kích thước lớn ít cốt thép) phải có độ cứng chống xoắn tối thiểu thỏa mãn biểu thức (4.1b) theo cả hai phương ngang.

(5) Với hệ khung hoặc hệ tường có các cấu kiện thẳng đứng được phân bố hợp lý trên mặt bằng,

Yêu cầu quy định trong (4)P của mục này có thể được xem như là thỏa mãn mà không cần tới sự kiểm tra bằng tính toán.

(6) Các hệ khung, hệ hỗn hợp hoặc hệ tường không có độ cứng chống xoắn tối thiểu theo (4)P của mục này cần được coi là hệ dễ xoắn.

(7) Nếu hệ kết cấu không đạt yêu cầu như hệ tường kích thước lớn ít cốt thép theo (3)P của mục này trên đây, thì tất cả các tường của nó cần được thiết kế và cấu tạo như là tường có tính dẻo kết cấu.

5.2.2.2. Hệ số ứng xử đối với các tác động động đất theo phương nằm ngang

(1)P Giá trị giới hạn trên của hệ số ứng xử q, nêu trong mục 3.2.2.5(3) để tính đến khả năng làm tiêu tán năng lượng, phải được tính cho từng phương khi thiết kế như sau:



q = q0 . kw ≥ 1,5

(5.1)

trong đó:

q0 là giá trị cơ bản của hệ số ứng xử, phụ thuộc vào loại hệ kết cấu và tính đều đặn của nó theo mặt đứng (xem (2)P của điều này);

kw là hệ số phản ánh dạng phá hoại phổ biến trong hệ kết cấu có tường (xem (11)P của điều này).

(2) Với loại nhà mà có sự đều đặn theo mặt đứng theo 4.2.3.3, giá trị cơ bản q0 cho các loại kết cấu khác nhau được cho trong Bảng 5.1.



Bảng 5.1 - Giá trị cơ bản của hệ số ứng xử, q0, cho hệ có sự đều đặn theo mặt đứng

Loại kết cấu

Cấp dẻo kết cấu trung bình

Cấp dẻo kết cấu cao

Hệ khung, hệ hỗn hợp, hệ tường kép

3,0u/1

4,5u/1

Hệ không thuộc hệ tường kép

3,0

4,0u/1

Hệ dễ xoắn

2,0

3,0

Hệ con lắc ngược

1,5

2,0

(3) Với loại nhà không đều đặn theo mặt đứng, giá trị q0 cần được giảm xuống 20 % (xem 4.2.3.1(7) và Bảng 4.1).

(4) Các tham số 1 và u được định nghĩa như sau:

1 là giá trị để nhân vào giá trị thiết kế của tác động đất theo phương nằm ngang để trong mọi cấu kiện của kết cấu sẽ đạt giới hạn độ bền chịu uốn trước tiên, trong khi tất cả các tác động khác vẫn không đổi;

u là giá trị để nhân vào giá trị thiết kế của tác động đất theo phương nằm ngang sẽ làm cho khớp dẻo hình thành trong một loạt tiết diện đủ để dẫn đến sự mất ổn định tổng thể kết cấu, trong khi tất cả các giá trị thiết kế của các tác động khác vẫn không đổi. Hệ số u có thể thu được từ phân tích phi tuyến tĩnh tổng thể.

(5) Khi hệ số u/1 không được xác định rõ bằng tính toán đối với loại nhà có tính đều đặn trong mặt bằng, có thể được sử dụng các giá trị xấp xỉ sau đây của u/1.

a) Hệ khung hoặc hệ kết cấu hỗn hợp tương đương khung:

- nhà một tầng: u/1 = 1,1;

- khung nhiều tằng, một nhịp: u/1 = 1,2;

- khung nhiều tầng, nhiều nhịp hoặc kết cấu hỗn hợp tương đương khung: u/1 = 1,3.

b) Hệ tường hoặc hệ kết cấu hỗn hợp tương đương với tường:

- hệ tường chỉ có hai tường không phải là tường kép theo từng phương ngang: u/1 = 1,0;

- các hệ tường không phải là tường kép: u/1= 1,1;

- hệ kết cấu hỗn hợp tương đương tường, hoặc hệ tường kép: u/1 = 1,2.

(6) Với loại nhà không có tính đều đặn trong mặt bằng (xem 4.2.3.2), khi không tính toán được giá trị của u/1 có thể sử dụng giá trị xấp xỉ của nó bằng trị số trung bình của (a) bằng 1,0 và của (b) đã cho trong (5) của điều này.

(7) Giá trị của u/1 lớn hơn những giá trị đã cho trong (5) và (6) của điều này có thể được sử dụng, miễn là chúng được xác định thông qua phân tích tổng thể phi tuyến tính.

(8) Giá trị tối đa của u/1 được sử dụng trong thiết kế có thể lấy bằng 1,5, kể cả khi việc phân tích theo (7) của điều này dẫn tới kết quả cao hơn.

(9) Giá trị của q0 đã cho đối với hệ con lắc ngược có thể lấy tăng lên, nếu có thể chứng minh được rằng sự phân tán năng lượng tương ứng cao hơn là được bảo đảm trong vùng tới hạn của kết cấu.

(10) Cho phép tăng giá trị q0 nếu có một kế hoạch đảm bảo chất lượng đặc biệt được áp dụng vào việc thiết kế, cung ứng vật tư và thi công ngoài các hệ thống kiểm soát chất lượng thông thường. Giá trị đã tăng lên này không được phép vượt quá 20 % so với các giá trị đã cho trong Bảng 5.1.

CHÚ THÍCH: Các giá trị được gán cho q0 có thể được quy định trong từng dự án cụ thể, phụ thuộc vào Kế hoạch đảm bảo chất lượng.

(11)P Hệ số kw phản ánh dạng phá hoại thường gặp trong hệ kết cấu có tường và được lấy như sau:

- 1,00 với hệ khung và hệ kết cấu hỗn hợp tương đương khung;

- (1 + 0)/3 ≤ 1, nhưng không nhỏ hơn 0,5 cho hệ tường, hệ kết cấu hỗn hợp tương đương tường và kết cấu dễ xoắn. (5.2)

trong đó: 0 là tỷ số kích thước các tường trong hệ kết cấu.

(12) Nếu các tỷ số cạnh hwi / lwi của tất cả các tường thứ i của một hệ kết cấu không khác nhau một cách đáng kể, thì 0 có thể được xác định từ biểu thức sau đây:





(5.3)

trong đó:

hwi là chiều cao tường thứ i;

lwi là độ dài của tường thứ i.

(13) Hệ kết cấu tường kích thước lớn ít cốt thép không thể dựa vào sự tiêu tán năng lượng trong các khớp dẻo cho nên nó cần được thiết kế như kết cấu có cấp dẻo kết cấu trung bình.



5.2.3. Tiêu chí thiết kế

5.2.3.1. Tổng quát

(1) Những quan niệm thiết kế trong 5.2.1 và trong Chương 2 phải được thực hiện đầy đủ đối với cấu kiện kháng chấn của kết cấu bêtông như đã quy định trong 5.2.3.2 đến 5.2.3.7.

(2) Các tiêu chí thiết kế trong 5.2.3.2 đến 5.2.3.7 được xem là sẽ thỏa mãn, nếu những điều khoản trong 5.4 đến 5.7 được tuân thủ.

5.2.3.2. Điều kiện chịu lực cục bộ

(1)P Tất cả các vùng tới hạn của kết cấu phải thỏa mãn những yêu cầu của 4.4.2.2(1).



5.2.3.3. Quy định thiết kế theo khả năng chịu lực và tiêu tán năng lượng

(1)P Sự phá hoại giòn hoặc các cơ chế phá hoại không mong muốn khác (ví dụ như sự tập trung khớp dẻo trong cột tại một tầng đơn lẻ của nhà nhiều tầng, sự phá hoại do cắt của các cấu kiện chịu lực, sự phá hoại của mối nối giữa dầm và cột, sự chảy dẻo của móng hoặc của bất kỳ bộ phận nào được dự tính là vẫn làm việc đàn hồi) phải được ngăn ngừa. Sự phá hoại như trên được ngăn ngừa bằng cách tính toán các hệ quả của tác động thiết kế cho các vùng được lựa chọn. Các hệ quả đó được rút ra từ điều kiện cân bằng với giả thiết rằng các khớp dẻo với khả năng vượt cường độ được hình thành trong các vùng lân cận của chúng.

(2) Các cột kháng chấn chính của khung hoặc kết cấu tương đương khung bằng bêtông cần thỏa mãn những yêu cầu thiết kế theo khả năng chịu lực và tiêu tán năng lượng trong 4.4.2.3(4) miễn những điều sau đây:

a) Trong khung phẳng có ít nhất 4 cột với kích cỡ tiết diện ngang gần giống nhau, không cần thiết phải thỏa mãn biểu thức (4.29) trong tất cả các cột ấy, nhưng phải thỏa mãn được ở 3 trong số 4 cột bất kỳ;

b) Tại tầng dưới của nhà 2 tầng nếu giá trị lực dọc thiết kế qui đổi d không vượt quá 0,3 trong bất kỳ cột nào;

(3) Cốt thép trong bản song song với dầm và trong phạm vi chiều rộng hữu hiệu của bản cánh quy định trong 5.4.3.1.1(3), được giả thiết là làm tăng khả năng chịu uốn của các dầm được kể đến khi tính toán tổng MRb trong biểu thức (4.29), nếu nó được neo qua tiết diện dầm tại chỗ nối.



5.2.3.4. Điều kiện dẻo kết cấu cục bộ

(1)P Để có được độ dẻo kết cấu tổng thể theo yêu cầu của kết cấu, vùng có khả năng hình thành khớp dẻo (sẽ được định rõ về sau cho từng loại cấu kiện nhà) phải có độ dẻo kết cấu cao khi uốn.

(2) Điều (1)P được xem là thỏa mãn nếu đáp ứng được những điều kiện sau đây:

a) Đảm bảo đủ độ dẻo kết cấu khi uốn cong trong tất cả các vùng tới hạn của cấu kiện kháng chấn chính, kể cả đầu cột (tùy thuộc vào khả năng hình thành khớp dẻo trong cột) (xem (3) của điều này);

b) Ngăn ngừa được sự mất ổn định của cốt thép chịu nén trong phạm vi vùng có khả năng hình thành khớp dẻo của cấu kiện kháng chấn chính. Các quy tắc ứng dụng có liên quan được cho trong 5.4.3 và 5.5.3.

c) Chất lượng cốt thép và bêtông đáp ứng được các điều kiện sau:

- Thép được sử dụng trong vùng tới hạn của cấu kiện kháng chấn chính nên có độ giãn dài dẻo đồng đều cao (xem 5.3.2(1)P; 5.4.1.1(3)P; 5.5.1.1(3)P);

- Tỷ số giữa giới hạn bền chịu kéo và giới hạn chảy của cốt thép trong vùng tới hạn của cấu kiện kháng chấn chính phải lớn hơn đáng kể so với 1. Thép làm cốt tuân theo yêu cầu của 5.3.2(1)P; 5.4.1.1(3)P; 5.5.1.1(3)P có thể được xem như thỏa mãn những yêu cầu này;

- Bêtông được sử dụng trong cấu kiện kháng chấn chính cần có cường độ chịu nén phù hợp và biến dạng khi phá huỷ vượt quá biến dạng ứng với cường độ chịu nén tối đa một khoảng dư phù hợp. Bêtông tuân thủ những yêu cầu thích hợp của 5.4.1.1(1)P hoặc 5.5.1.1(1)P, có thể được xem như là thỏa mãn những yêu cầu này.

(3) Trừ khi có nhiều dữ liệu chính xác hơn và trừ trường hợp khi áp dụng (4) của điều này, (2)a của điều này được xem là sẽ thỏa mãn nếu hệ số dẻo kết cấu khi uốn của các vùng này (được xác định dưới dạng tỷ số giữa độ cong khi đạt cường độ sau cực hạn ứng với 85 % của khả năng chịu mômen uốn và độ cong tại điểm chảy dẻo, khi các biến dạng của bêtông và cốt thép không vượt quá giá trị giới hạn cu và su,k) ít nhất cũng bằng các giá trị sau đây:



= 2q0 -1 nếu T1TC

(5.4)

= 1+ (2q0 -1) TC/T1 nếu T1 < T

(5.5)

trong đó:

q0 là giá trị cơ bản tương ứng của hệ số ứng xử lấy từ Bảng 5.1 và T1 là chu kỳ cơ bản của nhà, cả hai đều lấy trong phạm vi mặt phẳng thẳng đứng mà trong đó có uốn, và TC là chu kỳ tại giới hạn trên của vùng gia tốc phổ không đổi, theo 3.2.2.2(2)P.

CHÚ THÍCH: Các biểu thức (5.4) và (5.5) đều dựa trên:

+ mối quan hệ giữa và hệ số dẻo kết cấu khi chuyển vị : = 2 -1, mà thông thường hệ số này là một xấp xỉ thiên về an toàn đối với kết cấu bê tông;

+ mối quan hệ giữa q:

+ = q nếu T1TC,

+ = 1 + (q - 1) TC/T1 nếu T1 < TC (xem thêm B.5 trong Phụ lục tham khảo B).

Giá trị của q0 được sử dụng thay cho giá trị của q, vì q sẽ nhỏ hơn q0 đối với những nhà không đều đặn vì đã chấp nhận rằng cần phải có khả năng chịu lực ngang cao hơn để bảo vệ chúng. Tuy nhiên, các yêu cầu về dẻo kết cấu cục bộ trên thực tế có thể cao hơn so với những yêu cầu tương ứng với giá trị của q, vì thế một sự giảm bớt về độ dẻo kết cấu khi uốn cong là không đảm bảo.

(4) Trong vùng tới hạn của các cấu kiện kháng chấn chính có cốt thép dọc là thép loại B trong EN 1992-1-1:2004, Bảng C.1, hệ số dẻo kết cấu khi uốn cần lấy ít nhất bằng 1,5 lần giá trị tính được từ các biểu thức tương ứng (5.4) hoặc (5.5),



5.2.3.5. Tính siêu tĩnh của kết cấu

(1)P Mức độ siêu tĩnh cao đi kèm với khả năng phân bố lại nội lực là cần thiết, nó cho phép sự tiêu tán năng lượng lan truyền rộng rãi hơn và tổng năng lượng được tiêu tán cao hơn. Thông thường hệ kết cấu có mức độ siêu tĩnh thấp hơn phải được chỉ định hệ số ứng xử thấp hơn (xem Bảng 5.1). Khả năng phân bố lại nội lực cần thiết phải đạt được thông qua các quy tắc dẻo kết cấu cục bộ đã cho trong 5.4 đến 5.6.



5.2.3.6. Cấu kiện kháng chấn phụ và khả năng chịu lực

(1)P Một số ít các cấu kiện chịu lực có thể được thiết kế như cấu kiện kháng chấn phụ theo 4.2.2.

(2) Quy tắc thiết kế và cấu tạo các cấu kiện kháng chấn phụ nêu trong 5.7.

(3) Một số khả năng chịu động đất và hiệu ứng giữ ổn định không được xét đến một cách rõ ràng trong tính toán có thể làm tăng cả cường độ lẫn sự tiêu tán năng lượng (ví dụ như các phản lực màng của bản sàn phát sinh do độ vồng lên của tường chịu lực).

(4) Bộ phận phi kết cấu cũng có thể góp phần làm tiêu tán năng lượng, nếu chúng được phân bố đều trên toàn bộ kết cấu. Cần có các biện pháp làm giảm những ảnh hưởng bất lợi cục bộ có thể có do sự tương tác giữa các cấu kiện chịu lực và các bộ phận phi kết cấu (xem 5.9).

(5) Đối với khung có khối xây chèn (mà chúng là trường hợp phổ biến của bộ phận phi kết cấu) các quy tắc đặc biệt được nêu trong 4.3.6 và 5.9.



5.2.3.7. Các biện pháp bổ sung

(1)P Do bản chất ngẫu nhiên của tác động động đất và tính thiếu tin cậy của ứng xử sau đàn hồi có chu kỳ của kết cấu bêtông nên tính thiếu tin cậy tổng thể sẽ cao hơn đáng kể so với những tác động không phải do tác động động đất gây ra. Vì thế, phải thực hiện các biện pháp để giảm bớt tính thiếu tin cậy liên quan tới cấu hình kết cấu, liên quan tới sự phân tích kết cấu, tới khả năng chịu tác động và độ dẻo kết cấu.

(2)P Tính thiếu tin cậy chủ yếu về độ bền có thể xuất phát từ sai sót về kích thước hình học. Để giảm thiểu tính thiếu tin cậy này, phải áp dụng các quy tắc sau đây:

a) Một số kích thước tối thiểu của các bộ phận kết cấu phải được lưu ý (xem 5.4.1.2 và 5.5.1.2) nhằm giảm bớt mức độ sai sót về kích thước hình học.

b) Tỷ số giữa kích thước tối thiểu và kích thước tối đa của các cấu kiện thẳng phải được giới hạn, nhằm giảm thiểu rủi ro mất ổn định ngang của chúng, (xem 5.4.1.2 và 5.5.1.2.1(2)P).

c) Chuyển vị ngang của tầng phải được giới hạn, để hạn chế ảnh hưởng của hiệu ứng P- trong cột (xem 4.4.2.2(2) đến 4.4.2.2(4)).

d) Một phần đáng kể cốt thép trên của dầm tại các tiết diện ngang đầu dầm phải kéo suốt chiều dài của dầm (xem 5.4.3.1.2(5)P; 5.5.3.1.3(5)P) vì khó xác định vị trí của điểm uốn.

e) Để xét tới sự đảo chiều của mômen mà khi phân tích kết cấu không tính trước được bằng cách bố trí cốt thép tối thiểu tại mặt đối diện của dầm (xem 5.5.3.1.3).

(3)P Để giảm thiểu tính thiếu tin cậy về độ dẻo kết cấu, cần tuân thủ các quy tắc sau đây:

a) Độ dẻo kết cấu cục bộ tối thiểu phải được đảm bảo trong tất cả các cấu kiện kháng chấn chính không phụ thuộc vào cấp dẻo kết cấu đã được chọn trong thiết kế (xem 5.4 và 5.5).

b) Phải bố trí lượng cốt thép chịu kéo tối thiểu để tránh sự phá hoại giòn khi bị nứt (xem 5.4.3 và 5.5.5).

c) Phải giới hạn giá trị lực dọc thiết kế qui đổi (xem 5.4.3.2.1(3)P, 5.4.3.4.1(2), 5.5.3.2.1(3)P và 5.5.3.4.1(2)) để giảm bớt hậu quả do lớp bêtông bảo vệ bị phá hoại và để tránh tính thiếu tin cậy về độ dẻo kết cấu khi lực dọc tác dụng lớn.

5.2.4. Kiểm tra mức độ an toàn

(1)P Đối với việc kiểm tra trạng thái cực hạn, khi lấy các hệ số riêng cho tham số vật liệu c và s phải tính đến sự suy giảm cường độ có thể có của vật liệu do sự biến dạng có chu kỳ.

(2) Nếu không có những số liệu phù hợp hơn thì áp dụng các giá trị của những hệ số riêng c và s được chấp nhận trong tình huống thiết kế lâu dài và thay đổi, với giả thiết rằng nhờ các quy định về độ dẻo kết cấu cục bộ mà tỷ số giữa cường độ còn lại sau khi xuống cấp và cường độ ban đầu xấp xỉ bằng tỷ số giữa các giá trị M của các tổ hợp tải trọng đặc biệt và tổ hợp tải trọng cơ bản.

(3) Nếu sự suy giảm cường độ được tính toán một cách hợp lý khi đánh giá các tính chất của vật liệu, có thể dùng các giá trị M được chấp nhận trong tình huống thiết kế đặc biệt.

CHÚ THÍCH 1: Các giá trị hệ số riêng của vật liệu c và s cho các tình huống thiết kế lâu dài và các tình huống thiết kế đặc biệt có thể tìm thấy trong phụ lục của EN1992-1-1:2004.

CHÚ THÍCH 2: Phụ lục quy định việc sử dụng các giá trị M cho thiết kế chịu động đất. Chúng có thể là những giá trị dùng cho các tình huống thiết kế lâu dài và thay đổi hoặc cho các tình huống thiết kế đặc biệt. Thậm chí các giá trị trung gian có thể được lựa chọn trong phụ lục phụ thuộc vào việc các tham số vật liệu khi chịu tải trọng động đất được đánh giá như thế nào. Sự lựa chọn được kiến nghị chính là sự lựa chọn của (2) trong điều này, nó cho phép sử dụng giá trị tương tự của cường độ thiết kế cho các tình huống thiết kế lâu dài và thay đổi (ví dụ như tải trọng trọng trường kèm theo gió) và cho tình huống thiết kế chịu động đất.

5.3. Thiết kế theo EN 1992-1-1

5.3.1. Tổng quát

(1) Thiết kế chịu động đất với độ dẻo kết cấu thấp, theo EN 1992-1-1:2004 không có bất kỳ yêu cầu bổ sung nào ngoài những yêu cầu của 5.3.2, chỉ được kiến nghị dùng cho các trường hợp động đất yếu (xem 3.2.1.4).

5.3.2. Vật liệu

(1)P Trong các cấu kiện kháng chấn chính (xem 4.2.2) phải sử dụng cốt thép thuộc Loại B hoặc C trong EN 1992-1-1:2004, Bảng C.1.

5.3.3. Hệ số ứng xử

(1) Có thể sử dụng hệ số ứng xử q lên tới 1,5 trong việc xác định các tác động động đất mà không cần xem xét tới hệ kết cấu và tính đều đặn theo mặt đứng.



5.4. Thiết kế cho trường hợp cấp dẻo kết cấu trung bình

5.4.1. Vật liệu và kích thước hình học

5.4.1.1. Yêu cầu về vật liệu

(1)P Bêtông có cấp độ bền thấp hơn so với C16/20 không được sử dụng trong các cấu kiện kháng chấn chính.

(2)P Ngoại trừ cốt đai kín và đai móc, chỉ có thép thanh có gờ mới được sử dụng làm cốt trong vùng tới hạn của cấu kiện kháng chấn chính.

(3)P Trong vùng tới hạn của cấu kiện kháng chấn chính, phải sử dụng cốt thép thuộc loại B hoặc C trong EN 1992-1-1:2004, Bảng C.1.

(4)P Lưới thép hàn có thể được sử dụng nếu chúng thỏa mãn những yêu cầu trong (2)P và (3)P của điều này.

5.4.1.2. Kích thước hình học

5.4.1.2.1. Dầm

(1)P Độ lệch tâm của trục dầm so với trục của cột tại nút khung phải được hạn chế, nhằm đảm bảo truyền một cách có hiệu quả mômen có chu kỳ từ dầm kháng chấn chính sang cột.

(2) Để các yêu cầu đã quy định trong (1)P được thỏa mãn, khoảng cách giữa các trục đi qua trọng tâm của hai cấu kiện cần được hạn chế nhỏ hơn bc/4, trong đó bc là kích thước cạnh lớn nhất tiết diện ngang của cột vuông góc với trục dọc dầm.

(3)P Để tận dụng ảnh hưởng có lợi của sự làm việc chịu nén của cột đến độ bám dính của các thanh thép nằm ngang xuyên qua nút, chiều rộng bw của dầm kháng chấn chính phải thỏa mãn biểu thức sau đây:



bw ≤ min {b­c + h; 2bc}

(5.6)

trong đó:

hw là chiều cao của dầm và b­c như đã định nghĩa trong (2) của điều này.

5.4.1.2.2. Cột

(1) Trừ khi ≤ 0,1 (xem (2)), kích thước tiết diện ngang của cột kháng chấn chính không nên nhỏ hơn 1/10 của khoảng cách lớn nhất giữa điểm uốn và các đầu mút của cột, đối với trường hợp uốn trong phạm vi mặt phẳng song song với kích thước cột.



5.4.1.2.3. Tường có tính dẻo kết cấu

(1) Bề dày của tường, bw0, (tính bằng mét) cần thỏa mãn biểu thức sau đây:



bw0 ≥ max {0,15; h/20}

(5.7)

trong đó:

h là chiều cao thông thủy của tầng nhà, tính bằng mét.

(2) Những yêu cầu bổ sung liên quan đến độ dày của phần đầu tường bị hạn chế biến dạng tuân

theo quy định trong 5.4.3.4.2(10).

5.4.1.2.4. Tường kích thước lớn ít cốt thép

(1) Những điểm trong 5.4.1.2.3(1) cũng được áp dụng cho tường kích thước lớn ít cốt thép.



5.4.1.2.5. Những quy tắc áp dụng với dầm đỡ các kết cấu thẳng đứng không liên tục

(1)P Tường chịu lực không được tựa lên dầm hoặc bản sàn.

(2)P Đối với dầm kháng chấn chính đỡ cột không kéo dài xuống quá dầm, áp dụng các quy tắc sau:

a) Không được có độ lệch tâm nào của trục cột so với trục của dầm;

b) Dầm phải được tựa trên ít nhất là hai gối đỡ trực tiếp, chẳng hạn như tường hoặc cột.



tải về 2.76 Mb.

Chia sẻ với bạn bè của bạn:
1   ...   5   6   7   8   9   10   11   12   ...   34




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương