Syncrip facilitates porcine parvovirus viral dna replication through the alternative splicing of ns1 mrna to promote ns2 mrna formation



tải về 5.65 Mb.
Chế độ xem pdf
trang17/18
Chuyển đổi dữ liệu07.01.2023
Kích5.65 Mb.
#54118
1   ...   10   11   12   13   14   15   16   17   18
PPV.NS

Supplementary Information
The online version contains supplementary material available at 
https:// doi. 
org/ 10. 1186/ s13567- 021- 00938-6
.
Additional file 1. Mass spectrometry data. 
Acknowledgements
We thank the Life Science Research Core Services (LSRCS) in Northwest A&F 
University and College of Veterinary Medicine for supplying the laser confocal 
microscope and transmission electron microscopy.
Authors’ contributions
SC and YH designed the experiments, interpreted the data and wrote the 
article. SC and BM performed the experiments with assistance and advice 
from NC, CC, TS, XZ, LC, XZ and QD. YH and DT revised the paper. All authors 
read and approved the final manuscript.
Funding
This work was supported by the National Natural Science Foundation of 
China (31872447, 31972686), Project funded by China Postdoctoral Science 
Foundation (2020M683588), the science and technology innovation project 
in Shaanxi province (2018ZDCXL-NY-02-07, 2018ZDCXL-NY-02-04), the central 
project of major agricultural technology promotion funds (K3360217060), and 
Fundamental Research Funds for the Central Universities (2452017023).
Availability of data and materials
All data generated or analyzed during this study are included in this published 
article.
Declarations
Ethics approval and consent to participate
Handling of animals and experimental procedures were performed in accord-
ance with the guide lines for caring of laboratory animals of Northwest A&F 
University. All animal experiments were approved by the institutional commit-
tee of Northwest A&F University (number: 20161112212 and 20170516).
Competing interests
The authors declare that they have no competing interests.
Received: 26 December 2020 Accepted: 19 March 2021
References
1. Johnson RH, Collings DF (1969) Experimental infection of piglets and 
pregnant gilts with a parvovirus. Vet Rec 85:446–447
2. Meszaros I, Toth R, Olasz F, Tijssen P, Zadori Z (2017) The SAT protein of 
porcine parvovirus accelerates viral spreading through induction of 
irreversible endoplasmic reticulum stress. J Virol 91:e00627-e717
3. Majumder K, Boftsi M, Whittle FB, Wang J, Fuller MS, Joshi T, Pintel DJ 
(2020) The NS1 protein of the parvovirus MVM Aids in the localiza-
tion of the viral genome to cellular sites of DNA damage. PLoS Pathog 
16:e1009002
4. Niskanen EA, Kalliolinna O, Ihalainen TO, Hakkinen M, Vihinen-Ranta M 
(2013) Mutations in DNA binding and transactivation domains affect the 
dynamics of parvovirus NS1 protein. J Virol 87:11762–11774
5. Lin P, Cheng Y, Song S, Qiu J, Yi L, Cao Z, Li J, Cheng S, Wang J (2019) Viral 
nonstructural protein 1 induces mitochondrion-mediated apoptosis in 
mink enteritis virus infection. J Virol 93:e01249-e1319
6. Zhang J, Fan J, Li Y, Liang S, Huo S, Wang X, Zuo Y, Cui D, Li W, Zhong Z, 
Zhong F (2019) Porcine parvovirus infection causes pig placenta tissue 
damage involving nonstructural protein 1 (NS1)-induced intrinsic ROS/
mitochondria-mediated apoptosis. Viruses 11:389
7. Xu P, Zhou Z, Xiong M, Zou W, Deng X, Ganaie SS, Kleiboeker S, Peng J, 
Liu K, Wang S, Ye SQ, Qiu J (2017) Parvovirus B19 NS1 protein induces cell 
cycle arrest at G2-phase by activating the ATR-CDC25C-CDK1 pathway. 
PLoS Pathog 13:e1006266
8. Zhang X, Wang J, Mao Y, Xi J, Yu Y, Liu W (2017) Induction and suppression of 
type I interferon responses by mink enteritis virus in CRFK cells. Vet Microbiol 
199:8–14
9. Lin W, Qiu Z, Liu Q, Cui S (2013) Interferon induction and suppression in swine 
testicle cells by porcine parvovirus and its proteins. Vet Microbiol 163:157–161
10. Miller CL, Pintel DJ (2002) Interaction between parvovirus NS2 protein and 
nuclear export factor Crm1 is important for viral egress from the nucleus of 
murine cells. J Virol 76:3257–3266
11. McDermott SM, Yang L, Halstead JM, Hamilton RS, Meignin C, Davis I (2014) 
Drosophila Syncrip modulates the expression of mRNAs encoding key syn-
aptic proteins required for morphology at the neuromuscular junction. RNA 
20:1593–1606
12. Vu LP, Prieto C, Amin EM, Chhangawala S, Krivtsov A, Calvo-Vidal MN, Chou T, 
Chow A, Minuesa G, Park SM, Barlowe TS, Taggart J, Tivnan P, Deering RP, Chu 
LP, Kwon JA, Meydan C, Perales-Paton J, Arshi A, Gonen M, Famulare C, Patel 
M, Paietta E, Tallman MS, Lu Y, Glass J, Garret-Bakelman FE, Melnick A, Levine 
R, Al-Shahrour F et al (2017) Functional screen of MSI2 interactors identi-
fies an essential role for SYNCRIP in myeloid leukemia stem cells. Nat Genet 
49:866–875
13. Kuchler L, Giegerich AK, Sha LK, Knape T, Wong MS, Schroder K, Brandes RP, 
Heide H, Wittig I, Brune B, von Knethen A (2014) SYNCRIP-dependent Nox2 
mRNA destabilization impairs ROS formation in M2-polarized macrophages. 
Antioxid Redox Signal 21:2483–2497


Page 15 of 15
Chen et al. Vet Res (2021) 52:73 
14. Le Roux C, Del Prete S, Boutet-Mercey S, Perreau F, Balague C, Roby D, Fagard 
M, Gaudin V (2014) The hnRNP-Q protein LIF2 participates in the plant 
immune response. PLoS One 9:e99343
15. Mourelatos Z, Abel L, Yong J, Kataoka N, Dreyfuss G (2001) SMN interacts with 
a novel family of hnRNP and spliceosomal proteins. EMBO J 20:5443–5452
16. Halstead JM, Lin YQ, Durraine L, Hamilton RS, Ball G, Neely GG, Bellen HJ, Davis 
I (2014) Syncrip/hnRNP Q influences synaptic transmission and regulates BMP 
signaling at the Drosophila neuromuscular synapse. Biol Open 3:839–849
17. Kabat JL, Barberan-Soler S, Zahler AM (2009) HRP-2, the Caenorhabditis 
elegans homolog of mammalian heterogeneous nuclear ribonucleoproteins 
Q and R, is an alternative splicing factor that binds to UCU AUC splicing regula-
tory elements. J Biol Chem 284:28490–28497
18. Svitkin YV, Yanagiya A, Karetnikov AE, Alain T, Fabian MR, Khoutorsky A, Per-
reault S, Topisirovic I, Sonenberg N (2013) Control of translation and miRNA-
dependent repression by a novel poly(A) binding protein, hnRNP-Q. PLoS Biol 
11:e1001564
19. Hobor F, Dallmann A, Ball NJ, Cicchini C, Battistelli C, Ogrodowicz RW, Christo-
doulou E, Martin SR, Castello A, Tripodi M, Taylor IA, Ramos A (2018) A cryptic 
RNA-binding domain mediates Syncrip recognition and exosomal partition-
ing of miRNA targets. Nat Commun 9:831
20. McDermott SM, Meignin C, Rappsilber J, Davis I (2012) Drosophila Syncrip 
binds the gurken mRNA localisation signal and regulates localised transcripts 
during axis specification. Biol Open 1:488–497
21. Santangelo L, Giurato G, Cicchini C, Montaldo C, Mancone C, Tarallo R, Bat-
tistelli C, Alonzi T, Weisz A, Tripodi M (2016) The RNA-binding protein SYNCRIP 
is a component of the hepatocyte exosomal machinery controlling MicroRNA 
sorting. Cell Rep 17:799–808
22. Blanc V, Navaratnam N, Henderson JO, Anant S, Kennedy S, Jarmuz A, Scott 
J, Davidson NO (2001) Identification of GRY-RBP as an apolipoprotein B RNA-
binding protein that interacts with both apobec-1 and apobec-1 comple-
mentation factor to modulate C to U editing. J Biol Chem 276:10272–10283
23. Mizutani A, Fukuda M, Ibata K, Shiraishi Y, Mikoshiba K (2000) SYNCRIP, a cyto-
plasmic counterpart of heterogeneous nuclear ribonucleoprotein R, interacts 
with ubiquitous synaptotagmin isoforms. J Biol Chem 275:9823–9831
24. Ganaie SS, Chen AY, Huang C, Xu P, Kleiboeker S, Du A, Qiu J (2018) RNA 
binding protein RBM38 regulates expression of the 11-kilodalton protein of 
parvovirus B19, which facilitates viral DNA replication. J Virol 92:e02050-e2117
25. Wang J, Ganaie SS, Cheng F, Xu P, Ning K, Wang X, Kleiboeker S, Cheng S, Qiu J 
(2020) RNA binding motif protein RBM45 regulates expression of the 11-kilo-
dalton protein of parvovirus B19 through binding to novel intron splicing 
enhancers. mBio 11:e00192-20
26. Choi KS, Mizutani A, Lai MM (2004) SYNCRIP, a member of the heterogeneous 
nuclear ribonucleoprotein family, is involved in mouse hepatitis virus RNA 
synthesis. J Virol 78:13153–13162
27. Liu HM, Aizaki H, Choi KS, Machida K, Ou JJ, Lai MM (2009) SYNCRIP 
(synaptotagmin-binding, cytoplasmic RNA-interacting protein) is a host factor 
involved in hepatitis C virus RNA replication. Virology 386:249–256
28. Zhang X, Xiong Y, Zhang J, Shao T, Chen S, Miao B, Wang Z, Du Q, Huang 
Y, Tong D (2019) Autophagy promotes porcine parvovirus replication and 
induces non-apoptotic cell death in porcine placental trophoblasts. Viruses 
12:15
29. Guan W, Huang Q, Cheng F, Qiu J (2011) Internal polyadenylation of the par-
vovirus B19 precursor mRNA is regulated by alternative splicing. J Biol Chem 
286:24793–24805
30. Tan R, Nakajima S, Wang Q, Sun H, Xue J, Wu J, Hellwig S, Zeng X, Yates NA, 
Smithgall TE, Lei M, Jiang Y, Levine AS, Su B, Lan L (2017) Nek7 protects 
telomeres from oxidative DNA damage by phosphorylation and stabilization 
of TRF1. Mol Cell 65:818–831
31. Wang T, Du Q, Wu X, Niu Y, Guan L, Wang Z, Zhao X, Liu SL, Tong D, Huang Y 
(2018) Porcine MKRN1 modulates the replication and pathogenesis of porcine 
circovirus type 2 by inducing capsid protein ubiquitination and degradation. J 
Virol 92:e00100-e118
32. Luo Y, Kleiboeker S, Deng X, Qiu J (2013) Human parvovirus B19 infection 
causes cell cycle arrest of human erythroid progenitors at late S phase that 
favors viral DNA replication. J Virol 87:12766–12775
33. Marin-Bejar O, Huarte M (2015) RNA pulldown protocol for in vitro detection 
and identification of RNA-associated proteins. Methods Mol Biol 1206:87–95
34. Pillay S, Zou W, Cheng F, Puschnik AS, Meyer NL, Ganaie SS, Deng X, Wosen 
JE, Davulcu O, Yan Z, Engelhardt JF, Brown KE, Chapman MS, Qiu J, Carette JE 
(2017) AAV serotypes have distinctive interactions with domains of the cellular 
receptor AAVR. J Virol 91:e00391-e417
35. Bergeron J, Menezes J, Tijssen P (1993) Genomic organization and mapping 
of transcription and translation products of the NADL-2 strain of porcine 
parvovirus. Virology 197:86–98
36. Zadori Z, Szelei J, Tijssen P (2005) SAT: a late NS protein of porcine parvovirus. J 
Virol 79:13129–13138
37. Gupta SK, Yadav PK, Gandham RK, Sahoo AP, Harish DR, Singh AK, Tiwari AK 
(2016) Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse 
mammary tumor model. Virus Res 213:289–298
38. Sanchez JL, Romero Z, Quinones A, Torgeson KR, Horton NC (2016) DNA 
binding and cleavage by the human parvovirus B19 NS1 nuclease domain. 
Biochemistry 55:6577–6593
39. Gupta SK, Sahoo AP, Rosh N, Gandham RK, Saxena L, Singh AK, Harish DR, 
Tiwari AK (2016) Canine parvovirus NS1 induced apoptosis involves mitochon-
dria, accumulation of reactive oxygen species and activation of caspases. Virus 
Res 213:46–61
40. Eichwald V, Daeffler L, Klein M, Rommelaere J, Salome N (2002) The NS2 
proteins of parvovirus minute virus of mice are required for efficient nuclear 
egress of progeny virions in mouse cells. J Virol 76:10307–10319
41. Xu P, Chen AY, Ganaie SS, Cheng F, Shen W, Wang X, Kleiboeker S, Li Y, Qiu J 
(2019) The 11-kilodalton nonstructural protein of human parvovirus B19 facili-
tates viral DNA replication by interacting with Grb2 through its proline-rich 
motifs. J Virol 93:e01464-e1518
42. Beuck C, Williamson JR, Wuthrich K, Serrano P (2016) The acidic domain 
is a unique structural feature of the splicing factor SYNCRIP. Protein Sci 
25:1545–1550
43. Kulkarni S, Ramsuran V, Rucevic M, Singh S, Lied A, KulkarniO’HUigin C, Le 
Gall S, Carrington M, V (2017) Posttranscriptional regulation of HLA-A protein 
expression by alternative polyadenylation signals involving the RNA-binding 
protein Syncrip. J Immunol 199:3892–3899
44. Zhang K, Shang G, Padavannil A, Wang J, Sakthivel R, Chen X, Kim M, Thomp-
son MG, Garcia-Sastre A, Lynch KW, Chen ZJ, Chook YM, Fontoura BMA (2018) 
Structural-functional interactions of NS1-BP protein with the splicing and 
mRNA export machineries for viral and host gene expression. Proc Natl Acad 
Sci U S A 115:12218–12227
45. Sakuma K, Sasaki E, Kimura K, Komori K, Shimizu Y, Yatabe Y, Aoki M (2018) 
HNRNPLL, a newly identified colorectal cancer metastasis suppressor, modu-
lates alternative splicing of CD44 during epithelial-mesenchymal transition. 
Gut 67:1103–1111

tải về 5.65 Mb.

Chia sẻ với bạn bè của bạn:
1   ...   10   11   12   13   14   15   16   17   18




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương