LỜi nóI ĐẦu phần I tổng quan về HỆ thống thông tin quang sợI


VI.6. Phương hướng giải quyết ảnh hưởng của các hiệu ứng phi tuyến



tải về 0.59 Mb.
trang5/6
Chuyển đổi dữ liệu14.07.2016
Kích0.59 Mb.
#1727
1   2   3   4   5   6

VI.6. Phương hướng giải quyết ảnh hưởng của các hiệu ứng phi tuyến:

Với xu thế phát triển công nghệ và linh kiện quang học, hệ thống WDM hiện nay đã tìm được một số phương pháp giải quyết hữu hiệu để khắc phục ảnh hưởng của những hiệu ứng trên đối với truyền dẫn, nhất là hệ thống WDM có số lượng kênh quang tương đối ít (nhỏ hơn 16 kênh), tổng công suất truy nhập sợi quang thường không lớn hơn +17 dBm, nhỏ hơn nhiều so với trị số ngưỡng gây ra hiệu ứng SRS, do đó sẽ không có ảnh hưởng của SRS; sử dụng công nghệ điều chế ngoài của bộ kích quang và công nghệ dao động tần số thấp có thể khắc phục ảnh hưởng của hiệu ứng băng hẹp SBS; Hiệu suất trộn tần bốn sóng (FWM) có quan hệ rất lớn đối với tán sắc của sợi quang, sử dụng sợi quang G.655 có thể khắc phục được hiệu ứng FWM, hơn nữa giảm tán sắc của sợi quang, là lựa chọn tốt trong hệ thống WDM tốc độ cao; điều chế pha chéo (XPM) thường phát sinh trong hệ thống WDM có nhiều hơn 32 kênh tín hiệu, có thể khắc phục bằng phương pháp tăng tiết diện hữu dụng vùng lõi của sợi quang G.652; tự điều chế pha (SPM) sẽ làm hẹp độ rộng xung quang truyền dẫn, ngược lại với hiệu ứng dãn xung của tán sắc, ở mức độ nhất định, có thể lợi dụng SPM để bù sự dãn xung do tán sắc.



VII. BỘ KHUẾCH ĐẠI EDFA VÀ MỘT SỐ VẤN ĐỀ KHI SỬ DỤNG EDFA TRONG MẠNG WDM.

EDFA (Ebrium Doped Fiber Amplifier) là bộ khuếch đại quang sử dụng sợi quang có pha trộn nguyên tố đất hiếm Ebrium với nồng độ ít hơn 0,1%; nguồn bơm laser để kích thích các ion Er3+; ngoài ra còn có các bộ phối ghép, bộ cách ly... EDFA thường được gọi là bộ khuếch đại quang sợi (nguyên lý hoạt động và cấu tạo cụ thể sẽ được đề cập ở chương 4). Việc nghiên cứu chế tạo thành công bộ khuếch đại EDFA và ứng dụng chúng vào trong mạng WDM đã làm cho công nghệ WDM phát triển nhanh tróng. Cho đến nay, hầu như tất cả các hệ thống WDM dù là hệ thống thử nghiệm hay hệ thống thương mại đều sử dụng bộ khuếch đại quang sợi EDFA. EDFA được sử dụng tại đầu phát (gọi là bộ khuếch đại công suất) để bù vào tổn hao của bộ ghép kênh bước sóng, nâng cao công suất đưa vào sợi quang (vì bộ ghép kênh bước sóng có tổn hao cố hữu không thể khắc phục được, mà tổn hao này sẽ tăng nhanh tróng theo số kênh tín hiệu được ghép). Ở đầu thu, để bù vào tổn hao, nâng cao độ nhạy máy thu cũng cần bố trí bộ khuếch đại quang sợi (gọi là bộ tiền khuếch đại). Khi dùng bộ khuếch đại sợi quang làm bộ khuếch đại đường dây, cự ly truyền dẫn được nâng lên.

Tuy nhiên khi sử dụng EDFA trong mạng WDM cần lưu ý một số vấn đề sau:

VII.1. Tăng ích động có thể điều chỉnh của EDFA:

Hiện nay băng tần khuếch đại của EDFA đạt 35 ~ 40 nm, độ bằng phẳng của tăng ích trong băng tần không hoàn toàn lý tưởng, do công suất truyền dẫn của các kênh tín hiệu có thể biến đổi lên xuống, làm cho các kênh tín hiệu ứng với mỗi bước sóng khác nhau được khuếch đại với các mức độ khác nhau. Để đạt được độ đồng nhất về phổ khuếch đại đối với mọi bước sóng cần được khuếch đại, các bộ khuếch đại sử dụng bộ lọc để làm suy giảm nhiều hơn đối với các kênh bước sóng có mức sông suất vào lớn hơn, nhằm đạt được độ cân bằng về khuếch đại giữa các kênh. Thế nhưng công suất ra yêu cầu vẫn phải lớn cho toàn bộ băng được khuếch đại, do vậy phải yêu cầu có một công suất bơm đủ lớn để đạt được sự hài hoà về độ phẳng khuếch đại giữa các kênh và mức khuếch đại yêu cầu. Vấn đề là đặt bộ làm phẳng ở đâu trong module khuếch đại. Nếu đặt ở đầu ra của bộ khuếch đại thì sẽ có sự lãng phí về công suất bơm, nếu đặt ở đầu vào bộ khuếch đại thì lại làm tăng hệ số tạp âm của thiết bị.

Nếu một số kênh bước sóng nào đó đã đi qua các bộ định tuyến, OADM... thì công suất của kênh đó sẽ khác với công suất của các kênh khác tại đầu vào bộ khuếch đại. Nhưng yêu cầu tại đầu ra của bộ khuếch đại là công suất của các kênh được khuếch đại phải xấp xỉ nhau và không được phụ thuộc vào mức công suất vào của từng kênh hay số kênh được khuếch đại, để đảm bảo tỉ số S/N của hệ thống. Do đó các bộ khuếch đại sử dụng trong hệ thống WDM cần phải có độ khuếch đại điều chỉnh được mà không gây ảnh hưởng chéo lên các kênh khác.

Nếu công suất của kênh đưa vào biến đổi, thậm chí mất hẳn công suất trên một hoặc vài kênh thì công suất bơm (pump) của EDFA sẽ được phân phối lại cho các kênh còn lại, dẫn đến tăng ích của các kênh đó ở đầu ra sẽ biến đổi nhảy vọt, nếu công suất của các kênh còn lại này có giá trị lớn hơn công suất ngưỡng thu lớn nhất (Pthu max) thì thông tin sẽ bị mất. Cho nên EDFA trong hệ thống WDM phải có chức năng điều chỉnh tăng ích. Điều này đòi hỏi các bộ khuếch đại quang phải có tính năng mới đó là hệ số khuếch đại G sẽ là một hàm đa biến với các biến số là bước sóng và công suất vào của các bước sóng đó. Hàm này sẽ được thiết kế, điều khiển bằng phần mềm , có đáp ứng thời gian thực đối với các thông số của bộ khuếch đại... Khi tất cả các kênh đầu vào có mức tín hiệu như nhau, phần mềm “nhúng” trong bộ khuếch đại sẽ tự đông nhận biết và phát ra những tín hiệu điều khiển để đạt được mức khuếch đại không đổi. Khi có đột biến mức tín hiệu đầu vào, phần mềm sẽ phải có đáp ứng điều khiển một vài các thông số của thiết bị để đạt được sự hiệu chỉnh mức khuếch đại phù hợp, làm sao để đầu ra bộ khuếch đại vẫn có được độ phẳng và đồng nhất mức công suất ra.

Với sự gia tăng số bước sóng được chuyển qua và được khuếch đại (đã lên tới 160 kênh) thì số bơm laser cần thiết để đảm bảo yêu cầu về công suất cho một lượng lớn các kênh sẽ càng nhiều, mỗi bơm laser đó đều cần được giám sát về dòng bơm, nhiệt độ làm việc..., và luôn cần được giám sát, hiệu chỉnh để đạt được độ bằng phẳng của phổ khuếch đại .

VII.2. Tăng ích bằng phẳng của EDFA:

EDFA được sử dụng vào trong hệ thống WDM có bước sóng của các kênh tín hiệu khác nhau nên, thay vì chỉ khuếch đại một tín hiệu như các hệ thống khuếch đại quang sợi SONET/SDH trước đây; thì nay, vẫn một sợi khuếch đại quang erbium đó phải được chia sẻ cho toàn bộ các kênh bước sóng của hệ thống truyền dẫn WDM. Những kênh bước sóng này là độc lập với nhau, thế nhưng sự độc lập đó đã bị “tổn thương” bởi sự “cạnh tranh” giữa các kênh bước sóng đối với số lượng giới hạn các photon được bơm vào bộ khuếch đại. Kênh bước sóng nào kích thích được nhiều photon từ mưc siêu bền xuống mức cơ bản của chúng thì sẽ đạt được độ khuếch đại lớn nhất. Thế nhưng, kênh bước sóng này cũng gặp nhiều phức tạp như: xác suất kích thích photon của các kênh bước sóng khác, mức độ đảo ngược mật độ, cường độ của tín hiệu, độ dài của sợi erbium. Bình thường để tối ưu hoá các tham số này đã là khó, nhưng đối với hệ thống truyền dẫn WDM, mọi thứ thực sự trở nên rất khó khăn.

Rõ ràng là đối với các ứng dụng WDM, cần phải đạt được độ khuếch đại và mức tập âm đều nhau cho mọi kênh bước sóng qua module khuếch đại. Các module này phải được thiết kế sao cho đáp ứng phổ khuếch đại của nó đối với từng kênh bước sóng không bị ảnh hưởng bởi đầu vào (công suất hay bước sóng) của các kênh bước sóng cùng được truyền dẫn trên sợi. Nếu không, chỉ cần một sự thay đổi của một kênh bước sóng cũng sẽ dẫn đến những ảnh hưởng ngoài mong muốn về độ khuếch đại và mức tạp âm NF của các kênh bước sóng còn lại, và do đó, hoạt động của hệ thống sẽ có vấn đề.

Nói cách khác tất cả các kênh bước sóng phải được khuếch đại độc lập và đồng nhất. Với những yêu cầu kỹ thuật này, module khuếch đại sợi quang trong hệ thống WDM sẽ phải thích ứng với các chỉ tiêu kỹ thuật nghiêm ngặt về độ bằng phẳng của phổ khuếch đại đa kênh, độ dốc đường đặc tuyến khuếch đại.

Do đặc tính khuếch đại không đều, thế hệ đầu tiên của các hệ thống truyền dẫn WDM đã phải lựa chọn hoạt động tại vùng đỏ của băng C, xung quanh bước sóng từ 1540 nm đến 1565 nm. Sự ra tăng nhu cầu về số lượng bước sóng đã thúc đẩy các nhà sản xuất “đặt” các kênh bước sóng mới vào vùng “khó khăn” xung quanh bước sóng 1532 nm, mà tại đó không chỉ có mức tạp âm cao (tại vùng này có tỉ số bức xạ, hấp thụ thấp), mà hơn nữa độ nhấp nhô của phổ khuếch đại cũng lớn hơn nhiều so với các vùng bước sóng còn lại của băng.

VII.3. Tích luỹ tạp âm khi sử dụng bộ khuếch đại EDFA:

Hệ số tạp âm được định nghĩa là tỷ số tín hiệu trên tạp âm của tín hiệu quang đầu vào/tỷ số tín hiệu trên tạp âm của tín hiệu quang đầu ra, theo lý thuyết thì hệ số tạp âm của EDFA là khoảng 3 dB, hệ số tạp âm tăng tỷ lệ theo số lượng bộ khuếch đại được sử dụng trên tuyến và sự chênh lệch khoảng cách đoạn sợi quang giữa các bộ khuếch đại, thường khống chế độ dài đoạn sợi quang giữa hai bộ khuếch đại liên tiếp là 80 ~ 120 km, để đảm bảo tỷ lệ tín hiệu trên tạp âm.

Nhiễu tự phát được khuếch đại ASE (Amplifier Spontaneous Emission) gây nên tạp âm lớn trong các bộ khuếch đại quang, đặc biệt là trong trường hợp sử dụng nhiều EDFA liên tiếp trên đường truyền. Tạp âm ASE trong bộ khuếch đại quang phía trước sẽ được khuếch đại bởi bộ khuếch đại quang thứ hai. Sự khuếch đại và tích lũy tạp âm này sẽ làm cho tỷ số S/N bị giảm nghiêm trọng. Nếu mức công suất tín hiệu vào là quá thấp, tạp âm ASE có thể làm cho tỷ số S/N bị giảm xuống dưới mức cho phép. Tuy nhiên, nếu mức công suất tín hiệu vào quá cao thì tín hiệu này kết hợp với ASE có thể gây nên hiện tượng bão hoà ở bộ khuếch đại.

PHẦN 3 - TRIỂN KHAI TRUYỀN DẪN WDM TRÊN TUYẾN CÁP QUANG TRỤC BẮC NAM
3.1. DỰ BÁO NHU CẦU VỀ DUNG LƯỢNG TUYẾN THÔNG TIN QUANG.

Với điều kiện về địa lý rất đặc biệt, trãi từ Bắc tới Nam hơn 2500 km, nên tuyến truyền dẫn đường trục Bắc – Nam hết sức quan trọng. Trong 10 năm gần đây, nhu cầu về dịch vụ viễn thông đã không ngừng tăng lên với nhiều dịch vụ mới ra đời, đã góp phần tăng lên dung lượng trên tuyến truyền dẫn đường trục Bắc – Nam. Hơn nữa, ngoài sự tăng lên không ngừng về dung lượng truyền dẫn nội bộ giữa các tỉnh, tải trọng truyền dẫn đường trục còn tăng lên do các kết nối cáp quang quốc tế như: Tuyến T-V-H (đã khai thác); tuyến SEA-MEA-WE 3 (đã cập bờ tại Gateway Đà Nẵng); tuyến cáp quang xuyên 6 quốc gia Trung Quốc – Việt Nam – Campuchia – Thái Lan – Malaixia – singapo, với kết nối phía Việt Nam sẽ là:

Hướng lưu lượng đi Trung Quốc: theo tuyến cáp quang Hà Nội – Lạng Sơn.

Hướng lưu lượng đi Campuchia: theo tuyến cáp quang TP Hồ Chí Minh – Tây Ninh.

Toàn bộ lưu lượng của tuyến cáp quang quốc tế này sẽ đặt tải lên tuyến cáp quang đường trục Bắc Nam.

Dự báo về lưu lượng dưới đây được trích dẫn từ các kết quả phân tích dự báo trên cơ sở mối tương quan giữa tốc độ tăng trưởng tổng sản phẩm trong nước GDP và tốc độ tăng trưởng nhu cầu dịch vụ viễn thông, theo mô hình kinh tế lượng.



3.1.1 Kết quả dự báo nhu cầu thoại giai đoạn 2006 – 2010.

Quá trình dự báo nhu cầu thuê bao điện thoại phụ thuộc vào rất nhiều yếu tố (tốc độ phát triển dân số, dân số Việt Nam tại thời điểm dự báo, tôc độ tăng trưởng GDP, bình quân GDP trên đầu người), tổng hợp các yếu tố này sẽ được kết quả dự báo tương đối chính xác về nhu cầu dịch vụ điện thoại trong tương lai. Trên đây là đồ thị thể hiện khả năng lắp đặt dịch vụ điện thoại trong giai đoạn 2006 – 2010. Nếu tình hình kinh tế phát triển tốt thì tổng số thuê bao điện thoại dự tính đạt 18,5 triệu vào năm 2010.



3.1.2 Kết quả dự báo nhu cầu phi thoại giai đoạn 2006 – 2010.

Nhu cầu phi thoại bao gồm: Các dịch vụ mới như: Truyền số liệu, dịch vụ Internet, ISDN băng hẹp, băng rộng…sẽ tăng rất nhanh trong thời gian tới, góp phần tăng lưu lượng trên tuyến truyền dẫn trục Bắc Nam.



  • Internet là một trong những dịch vụ viễn thông sẽ phát triển rất nhanh trong thời gian tới, theo xu hướng phát triển và dự báo của tổng cục bưu điện thì số thuê bao Internet đạt 185000 vào năm 2010.

  • Các dịch vụ ISDN gồm: Truyền hình hội nghị, Video phone, Fax nhóm IV, thuê kênh riêng, truyền số liệu tốc độ thấp…, sẽ tập trung vào các khu công nghiệp, thành phố lớn vf nhu cầu sẽ còn tăng rất nhanh trong những năm tới.

  • Dịch vụ truyền số liệu phục vụ chủ yếu các nghành lớn; cho các công ty khai thác dịch vụ viễn thông thuê…, bao gồm dịch vụ Leased line; Frame Relay; X.25.




3.1.3. Kết luận.

Ước tính về lưu lượng trên tuyến truyền dẫn trục Bắc Nam (chưa tính đến lưu lượng cộng thêm khi hoàn thành dự án kết nối cáp quang 6 nước CHN – VIE – CPC – THL – MAL – SIG ):



Như vậy là, đến năm 2010. lưu lượng đạt đến 90 luồn STM-1, xấp xỉ 15Gbps, cần có phương án nâng cấp tuyến truyền dẫn trục Bắc Nam đang lf 2.5Gbps lên 20Gbps.

(Nguồn: Quy hoạch tổng thể phát triển mạng viễn thông giai đoạn 2006 – 2010 VNPT).



3.2. Khảo sát cấu hình cáp quang trục Bắc Nam.

3.2.1. Cấu hình tuyến.

Cáp quang đường trục Bắc Nam bao gồm hai tuyến cáp: Tuyến cáp quang dọc quốc lộ 1A và tuyến cáp quang trên đường dây 500KV; kết nối tạo thành mạng Ring vu hồi, được giám sát, quản lý và điều khiển theo 4 vòng Ring con:



  • HNI – HTH (Hà Nội – Hà Tĩnh) -> Ring 1

  • HTH – DNG (Hà Tĩnh – Đà Nẵng) -> Ring 2

  • DNG – QNN (Đà Nẵng – Quy Nhơn) -> Ring 3

  • QNN – HCM (Quy Nhơn – TP HCM) -> Ring 4




Thiết bị dung lượng STM – 16 do Nortel cung cấp, kết nối giữa các Ring chủ yếu là kết nối 1 nút ngoại trừ kết nối giữa Ring 3 và Ring 4 có thêm một nút là Playku. Tín hiệu truyền dẫn là NRZ.

Cáp quang sử dụng là cáp G.652 (suy hao tại bước sóng 1550nm là 0.28dB/km, tán sắc tại bước sóng này là 18ps/nm.km), tuyến dọc quốc lộ gồm 8 sợi, trên đường dây 500KV tổng công ty bưu chính viễn thông sử dụng 4 sợi. chi tiết về các loại cáp được sử dụng được khảo sát kỹ trước khi nâng cấp dung lượng tuyến



3.2.2 Kết nối giữa các Ring – Cấu hình dự phòng.

Mỗi Ring được bảo vệ theo kiểu kết nối MS – SPRing (MS-BSHR), xem hình vẽ sau:



Nếu kết nối như trên (không có N2 và N4) thì chỉ có thể bảo vệ sự cố của từng Ring, nhưng không thể bảo vệ kết nối giữa các Ring luôn đảm bảo (Giả sử sự cố tại N1 hoặc N3); đây là trường hợp kết nối giữa Ring 1 và Ring 2, giữa Ring 2 và Ring 3.

Kết nối giữa Ring 3 và Ring 4 là kiểu matched – node, có tồn tại kết nối giữa N3 và N4, do đó có thể bảo vệ mạng ngay cả khi có sự cố tại Node.

Tuyến đường trục là tuyến có lưu lượng cao, rất quan trọng, vì vậy cấu hình bảo vệ kiểu Ring là hợp lý, tuy nhiên, nếu xảy ra sự cố node kết nối tại HTH hoặc DNG thì sẽ gây gián đoạn thông tin, phương án nâng cấp tuyến cần xem xét cả vấn đề này. Nên thay đổi cấu hình mới sang kiểu matched – node có sử dụng DXC/OXC; Nhưng đòi hỏi phải mua thêm thiết bị N­2 và N4, mua thêm DXC/OXC.




3.3. Tham khảo mạng đường trục (BACK BONE NETWORK).

Mô hình lớp mạng của mạng viễn thông trong trương lai – xu hướng phát triển của các quốc gia có nền tảng viễn thông phát triển – đồng thời là hướng nghiên cứu phát triển các công nghệ và sản phẩm nhằm hướng tới một mô hình mạng như vậy.

Doanh thu từ việc bán thiết bị công nghệ WDM lên tới hàng trăm triệu $. Các nhà cung cấp thiết bị WDM hàng đầu là 35% thị trường, Nortel 23%, Lucent 17%, Ancatel 13%. Pirelli, Ericson, Siemens và Marconi chia sẻ 11% thị trường còn lại. Dự báo cho biết thị trường công nghệ WDM còn tăng mạnh trong các năm tới.

Một dự án 100 triệu $ về việc triển khai WDM của GTS (Global Telesystem) với nhà đầu Ciena cho mạng Trans European Network của GTS.




Mạng này đi qua 50 thành phố của 20 nước Châu Âu, cung cấp các dịch vụ mạng và dịch vụ băng rộng… Mạng truyền dẫn này sẽ bước đầu khai thác ở tốc độ 10 Gbps (OC 192) và có thể đạt tới 96 kênh bước sóng quang trên một đôi sợi trong tương lai, sẽ cho phép GTS tiếp tục là nhà cung cấp dịch vụ truyền dẫn băng rộng dung lượng cao nhất và lớn nhất xuyên Châu Âu.

3.4. Đề xuất lựa chọn phương án tăng dung lượng.

Các phương án đề xuất dưới đây đều nhằm tăng dung lượng tuyến truyền dẫn trục Bắc Nam mà không phải lắp đặt thêm hoặc thay sợi quang, phải đảm bảo các yêu cầu:



  • Quá trình nâng cấp không được phép gây gián đoạn thông tin

  • Tận dụng tồi đa và đảm bảo tương thích hệ thống đang khai thác.

  • Đảm bảo chất lượng của tuyến thông tin sau khi nâng cấp, linh hoạt trong việc định tuyến, đảm bảo an toàn khi xảy ra sự cố cáp hoặc sự cố thiết bị. Quản lý mạng mềm dẻo, có khả năng quản lý thiết bị của nhiều hãng khác nhau, có khả năng mở rộng, ghép nối với cá tuyến cáp quang quốc tế, tuyến cáp quang ven biển nội địa…

  • Có tính khả thi về kinh tế - tính bảo mật – độ an toàn.

Các phương án có thể:

+ Phương án 1: Nâng cấp theo công nghệ TDM từ 2,5Gbps lên 10 Gbps.

+ Phương án 2: Kết hợp công nghệ TDM và WDM: Nâng cấp TDM tốc độ từ 2,5Gbps lên 10Gbps (STM - 64), sau đó thực hiện ghép 2 bước sóng tín hiệu 10Gbps thành dung lượng 20Gbps.

+ Phương án 3: Dùng hoàn toàn công nghệ WDM, sử dụng 8 bước sóng, mỗi bước sóng mang tín hiệu 2,5Gbps (STM - 16), thành dung lượng 20Gbps.



3.4.1. Phương án 1: Tăng dung lượng bằng ghép kênh TDM.

Đối với truyền dẫn quang TDM, vấn đề cần quan tâm nhất khi tăng dung lượng lên tới 20Gbps đối với sợi G.652 là suy hao và tán sắc. Vì vậy phương án này đưa ra các đề xuất về bù suy hao và tán sắc.

Bù suy hao: Bằng cách đo kiểm, tính toán và lắp đặt thêm các bộ khuếch đại quang OA (gồm 3 cấu hình BA, LA, PA), tuy nhiên có giới hạn cho số OA được mắc thêm, bởi nếu công suất quang quá lớn sẽ gây ra hiệu ứng phi tuyến, các bộ OA đều sinh ra nhiễu ASE cộng thêm vào tín hiệu dọc tuyến, gây ra suy giảm SNR của hệ thống.

Xử lý tán sắc


  • Sử dụng sợi G.653.

  • Bù tán sắc bằng phương pháp điều chế tự dịch pha SPM.

  • Bù tán sắc bằng các thành phần bù tán sắc thụ động (bộ kết hợp quay pha bước sóng và sợi tán sắc âm).

  • Bù tán sắc các thiết bị dịch tần trước (Pre – Chirp).

  • Bù tán sắc bằng kỹ thuật DST (Dispersion Supported Transmission).

Kết luận: Phương án này chỉ đưa ra mang tính tham khảo, không khả thi bởi hiện tại xu thế các mạng backbone network trên thế giới đang triển khai phương án truyền dẫn WDM, vả lại thiết bị TDM tốc độ cao 20Gbps đắt chi phí cho tuyến TDM tôc độ 20Gbps rất lớn bởi phải xử lý bù suy hao và bù tán sắc rất nghiêm ngặt.

3.4.2. Phương án 2: Tăng dung lượng bằng ghép kênh TDM kết hợp với ghép 2 bước sóng WDM.

Phương án này thực hiện theo 2 giai đoạn:

+ Nâng cao thiết bị lên chủng loại STM – 64, thực hiện truyền dẫn 10Gbps.

+ Triển khai module WDM thực hiện ghép 2 luồng tín hiệu STM – 64 thành tổng dung lượng 20Gbps.


Ưu điểm:


- Do chỉ có 2 kênh bước sóng, mỗi kênh tốc đốTM – 64 nên thiết bị phải quản lý ít.

- Lưu lượng trên một RING rất lớn, nên nếu có sự thay đổi về nhu cầu lưu lượng thì ít có khả năng phải phân bố lại lưi lượng giữa các RING.

Nêu trong phần đánh giá lựa chọn phương án.

3.4.3. Phương án 3: Tăng dung lượng bằng ghép kênh WDM 8 bước sóng STM – 16.

Phương án 3 sử dụng 8 bước sóng, mỗi bước sóng sẽ mang tín hiệu luồng STM – 16 (2,5Gbps).




Ưu điểm:

- Do dung lượng mỗi bước sóng nhỏ (2,5Gbps), nên có thể thực hiện tăng dung lượng của cả tuyến truyền dẫn một cách từ từ theo nhu cầu (phụ thuộc số kênh bước song được sử dụng).

- Với tốc độ mỗi kênh bước sóng là 2,5Gbps thì sẽ ít bị ảnh hưởng của tán sắc, các hiệu ứng phi tuyến. Nhờ vậy khoảng cách giữa các trạm lặp có thể tăng tới 150 km (khuyến nghị G.692). Với tốc độ mỗi kêng bước sóng như vậy thì việc tính toán lại cự ly trạm lặp và các vấn đề liên quan đến bù tán sắc sẽ đơn giản, có thể giữ nguyên cấu hình phân bố các trạm như hiện nay (bởi tốc độ 2,5Gbps là tốc độ hiện đang khai thác tốt trên tuyến trục Bắc Nam).

- Vẫn có thể sử dụng đường cáp G.652 sẵn, chỉ cần kiểm tra lại chất lượng các đoạn cáp bị xuống cấp, và một số mối hàn có suy hao lớn.

- Tận dụng được phần lớn số thiết bị STM – 16 đang khai thác.

- Phù hợp với xu thế công nghệ truyền dẫn hiện đại đang được triển khai rộng rãi trên thế giới.



Nhược điểm:

- Số lượng truyền dẫn SDH liên quan đến tuyến WDM khá nhiều, do đó sẽ phức tạp về việc quản lý mạng.

- Việc quản lý lưu lượng cũng sẽ phức tạp, vì thực chất, mỗi RING lớn gồm 8 bước sóng sẽ tương đương vơi 8 RING con ( mỗi RING con là một bước sóng mang tín hiệu STM - 16); mà mỗi trạm xen rẽ lưu lượng nhỏ sẽ chỉ tác dụng lên bước sóng (1 RING con), nếu giả thiết cần bổ xung lưu lượng hoặc thay thế phân bố lưu lượng tại các trạm xen rẽ bước sóng thì vấn đề sẽ phức tạp, sẽ cần thêm các thiết bị DXC, hoặc cao cấp hơn là OXC.

3.4.4. Đánh giá và lựa chọn phương án.

Không nên lựa chọn phương án 1 vì những luận điểm nêu trên.

Không nên chọn phương án 2 vì đối với phương án này, so với phương án 3 tồn tại những nhược điểm sau:

- Tốc độ của từng kênh bước sóng vẫn là 10Gbps, cho nên bị ảnh hưởng mạnh mẽ của tán sắc, các hiện tượng phi tuyến, tán sắc PMD …

- Do lưu lượng thực sự trên tuyến xuất phát chủ yếu từ 3 trung tâm lớn (Hà Nội – Đà Nẵng – TP HCM), nên chỉ đóng vai trò lưu lượng chuyển qua, nếu vậu thì lưu lượng thực tế xen rẽ giữa các node sẽ không cần đến thiết bị STM – 64 (gây lãng phí). Hơn nữa, không có sự tăng đột biến về lưu lượng từ 2,5Gbps lên 10Gbps, sau đó lên 20Gbps, nên phương án này tỏ ra không hiệu quả.

- Thiết bị truyền dẫn quang 10Gbps giá vẫn cao.

Nên chọn phương án 3 vì phương án này khắc phục được các nhược điểm của phương án 2; những nhược điểm của phương án này có thê khắc phục bởi:

- Đối với vấn đề quản lý mạng, sẽ áp dụng mô hình quản lý TMN theo khuyến nghị của ITUT.

- Đối với việc phức tạp trong việc cấu hình lạ lưu lượng giữa cá RING, đã có những sản phẩm thương mại DXC, và hiện đang cho ra đời các sản phẩm OXC đảm nhiệm. Hơn nữa, các thiết bị kiểu OADM hiện rất linh hoạt trong việc thiết lập bước sóng xen rẽ. Vả lại, khi áp dụng phương án 3, việc đưa thên lưu lượng vào có thể thực hiện từ từ theo nhu cầu (cần đến đâu dùng đến đó), do đó vấn đề cấu hình lại lưu lượng không đáng lo. (Xem hình dưới).


Vậy nên chọn phương án 3: Ghép 8 bước sóng mang tín hiệu STM – 16 (2,5Gbps).

3.5. Xây dựng phương án tăng dng lượng theo phương án lựa chọn.

3.5.1. Khoảng cách kênh bước sóng được ghép.

Có 2 cách sắp xếp bước sóng cần ghép: Ghép cách đều (Coarser), hoặc ghép không đều (Uneven), khoảng cách kêng bước sóng là số nguyên lần 100 Ghz (tham khảo khuyến nghị G.692).

Sau khi xem xét, kết luận nên chọn như sau:

- Tần số bước sóng trung tâm: 193,1Ghz, (c==1552,52nm).

- Khoảng cách kênh bước sóng là 200 Ghz - ghép đều.

- Bước sóng 1510nm làm kênh OSC (Optical Supervisor Channel) cho các LA. (khuyến nghị G.692).

Chọn như vậy có những ưu điểm sau:

- Đảm bảo toàn bộ các kênh bước sóng đều nằm trong vùng phẳng nhất của phổ khuếch đại EDFA. Từ công thức liên hệ giữa f (f=-c*; c= 299791,647 kmps; =1550nm); tính được với bước sóng, f=8*200Ghz, tính được =12,82nm. Do đó không cần mua thiết bị EDFA chất lượng cao, nên giảm được chi phí.

- Với khoảng cách kênh 200Ghz, yêu cầu về độ rộn phổ và dung sai về phổ của laser phát sẽ không cần cao, nên cũng giảm được chi phí.

- Các thiết bị ghép kênh WDM 8 hoặc 16 bước sóng với khoảng cách kênh 200Ghz đang được nhiều hãng cung cấp.



Каталог: nonghocbucket -> UploadDocument server07 id1 24230 nh42986 67215
UploadDocument server07 id1 24230 nh42986 67215 -> Công nghệ rfid giới thiệu chung
UploadDocument server07 id1 24230 nh42986 67215 -> MỤc lục danh mục các chữ viết tắt 3 Danh mục bảng biểu hình vẽ 4
UploadDocument server07 id1 24230 nh42986 67215 -> HỌc viện công nghệ BƯu chính viễn thông quản trị sản xuấT
UploadDocument server07 id1 24230 nh42986 67215 -> Báo cáo đánh giá tác động môi trường Dự án: Nhà máy sản xuất hạt nhựa 3h vina của công ty tnhh 3h vina
UploadDocument server07 id1 24230 nh42986 67215 -> ĐỀ 24 thi ngày 22/9
UploadDocument server07 id1 24230 nh42986 67215 -> ĐƯỜng lối ngoại giao củA ĐẢng trong cách mạng dân tộc dân chủ nhân dâN (1945-1954)
UploadDocument server07 id1 24230 nh42986 67215 -> Đồ án xử lý nước cấp Thiết kế hệ thống xử lý nước cho 2500 dân
UploadDocument server07 id1 24230 nh42986 67215 -> HiÖn nay gç rõng tù nhiªn ngµy cµng khan hiÕm mµ nhu cÇu sö dông gç ngµy cµng cao
UploadDocument server07 id1 24230 nh42986 67215 -> Câu 1: Những nội dung cơ bản trong Cương lĩnh chính trị đầu tiên của Đảng Công sản Việt Nam
UploadDocument server07 id1 24230 nh42986 67215 -> Lời nói đầu

tải về 0.59 Mb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5   6




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương