Guide to maintenance


Dự báo tốc độ xuống cấp do lún



tải về 0.7 Mb.
trang5/10
Chuyển đổi dữ liệu05.08.2016
Kích0.7 Mb.
#13437
loạiGuide
1   2   3   4   5   6   7   8   9   10

6.2.3.2. Dự báo tốc độ xuống cấp do lún

Tốc độ xuống cấp phụ thuộc vào sự phát triển của độ lún theo thời gian. Việc dự báo tốc độ xuống cấp có thể được thực hiện theo các phương pháp sau:

- Tính toán độ lún theo thời gian trên cơ sở tải trọng công trình và các chỉ tiêu cơ lý của đất nền theo TCVN 9362:2012;

- Phân tích kết quả quan trắc, từ đó dự báo sự phát triển của độ lún, nghiêng, nứt và sự ảnh hưởng của nó đối với công năng về khả năng chịu tải và yêu cầu sử dụng bình thường của công trình.



6.2.4. Đánh giá mức độ xuống cấp và lựa chọn biện pháp khắc phục

6.2.4.1. Đánh giá mức độ xuống cấp

6.2.4.1.1. Nguyên tắc chung

Mức độ xuống cấp do nguyên nhân nền móng được đánh giá theo các chỉ số công năng:

Công năng về an toàn (khả năng chịu tải);

Công năng sử dụng bình thường của công trình: Độ lún tuyệt đối, độ lún lệch và độ nghiêng của kết cấu.



6.2.4.1.2. Đánh giá mức độ xuống cấp theo công năng về an toàn

Tải trọng truyền lên móng không được vượt quá sức chịu tải cho phép của nền:

N < Qa (5)

Trong đó:

Qa là sức chịu tải cho phép, được xác định từ sức chịu tải giới hạn Q0 và hệ số an toàn Fs theo quan hệ Qa = Q0/Fs.

Tùy theo từng trường hợp cụ thể, phương pháp tính toán Qa và giá trị của F cho các điều kiện đất nền khác nhau được xác định theo các TCVN 9362:2012; TCVN 5574:1991 và TCVN 5573:1991, hoặc tham khảo theo TCXD 205:1998, hoặc bằng phương pháp thực nghiệm.

Nếu N < Q­a thì công năng về khả năng chịu tải đáp ứng yêu cầu. Ngược lại nếu N > Q­a thì phải áp dụng biện pháp gia cố công trình để tăng khả năng chịu tải của móng.

6.2.4.1.3. Đánh giá mức độ xuống cấp theo mức độ đáp ứng yêu cầu sử dụng bình thường

Công năng cần đánh giá trong trường hợp này là mức biến dạng của công trình. Độ lún tuyệt đối S, độ lún lệch S/L và độ nghiêng i của công trình không được vượt quá giới hạn cho phép:

S ≤ [S] (6)

S/L ≤ [S/L] (7)

i ≤ [i] (8)

trong đó:

[S], [S/L] và [i] là các trị số cho phép của biến dạng, xác định theo Bảng 4 và Bảng 5.

Độ lún và nghiêng của công trình được tính toán theo TCVN 9362:2012 hoặc bằng quan trắc.

Nếu các điều kiện trên không được thỏa mãn (không đáp ứng công năng sử dụng) thì phải áp dụng biện pháp gia cố nền thích hợp để ngăn chặn sự phát triển của độ lún và nghiêng.

6.2.4.2. Lựa chọn biện pháp khắc phục

6.2.4.2.1. Yêu cầu chung

Biện pháp khắc phục sự xuống cấp của công trình được xác định theo kết quả đánh giá nguyên nhân và dự báo tốc độ xuống cấp. Nó phải đáp ứng các yêu cầu về kinh tế - kỹ thuật, các yếu tố khác cần xem xét là tuổi thọ công trình, giá trị vô hình và hữu hình, mức độ nguy hiểm, các yếu tố xã hội và môi trường, tính khả thi… Việc lựa chọn biện pháp khắc phục xuống cấp phụ thuộc chủ yếu vào độ lún còn lại của công trình. Nếu độ lún còn lại là nhỏ thì chỉ cần phục hồi khả năng làm việc của kết cấu. Các phương pháp gia cường móng được lựa chọn khi độ lún còn lại lớn, có khả năng gây hư hỏng công trình. Thông thường có nhiều biện pháp khắc phục có thể đáp ứng được yêu cầu đề ra, vì vậy cần so sánh các chỉ tiêu kinh tế - kỹ thuật của chúng để có thể xác định biện pháp tối ưu.

Kết cấu sau khi được sửa chữa phải đáp ứng các yêu cầu cho các công năng sau đây:

- Công năng về khả năng chịu tải;

- Công năng sử dụng của công trình;

Yêu cầu đối với việc kiểm tra các công năng nêu trên được trình bày trong 6.2.4.1.



6.2.4.2.1. Lựa chọn biện pháp khắc phục

Kiến nghị biện pháp khắc phục sự xuống cấp của công trình được trình bày trong Bảng 6.

Nội dung các biện pháp khắc phục được trình bày trong 6.2.4.3 và 6.2.4.4.

Bảng 4 - Độ lún và nghiêng giới hạn của công trình (tham khảo theo TCXD 205:1997)

Công trình

Độ lún lệch tương đối

S/L


Độ nghiêng

i


Độ lún trung bình S hoặc lớn nhất

Smax (trong ngoặc), cm



1. Nhà sản xuất 1 tầng và nhà dân dụng nhiều tầng có khung hoàn toàn bằng bê tông cốt thép

0,002

-

(8)

2. Nhà và công trình mà trong kết cấu không xuất hiện nội lực do lún không đều

0,006

-

(15)

3. Nhà nhiều tầng không khung với tường chịu lực:










- Bằng tấm lớn

0,0016

0,005

10

- Bằng khối lớn hoặc thể xây gạch không có thép

0,0020

0,0005

10

- Như trên nhưng có thép, trong đó có giằng bê tông cốt thép

0,0024

0,0005

15

4. Công trình tháp chứa bằng kết cấu bê tông cốt thép:










- Nhà công tác và silo, kết cấu đổ tại chỗ liền khối trên cùng một móng bè

-

0,003

40

- Như trên nhưng kết cấu lắp ghép

- Silo độc lập kết cấu toàn khối đổ tại chỗ

- Như trên nhưng kết cấu lắp ghép

- Nhà công tác đứng độc lập



-

-

-



-

0,003

0,004


0,004

0,004


30

40

30



25

5. Ống khói có chiều cao H, m:

- H ≤ 100 m

- 100 ≤ H ≤ 200 m

- 200 ≤ H ≤ 300 m

- H > 300 m

-

-



-

-

0,005

1/(2H)


1/(2H)

1/(2H)

40

30

20



10

6. Công trình cứng cao đến 100 m, ngoài những điều đã nói ở điểm 4 và điểm 5

-

0,004

20

7. Công trình liên lạc, ăng ten:

- Thân tháp tiếp đất

- Thân tháp phát thanh cách điện với đất

- Tháp phát thanh

- Tháp phát thanh sóng ngắn

- Tháp (block riêng rẽ)


-

-



0,002

0,0025


0,001

0,002

0,001


-

-

-



-

20

10

-



-

-

-



8. Trụ đường dây tải điện trên không:

- Trụ trung gian

- Trụ neo, neo góc, trụ góc trung gian, trụ ở vòng cung, cửa chính của thiết bị phân phối kiểu hở




0,003


0,0025

-

-



- Trụ trung chuyển đặc biệt




0,002

-

CHÚ THÍCH:

- Trị giới hạn của độ võng (vồng lên) tương đối của nhà nói ở điểm 3 lấy bằng 0,5S/L.

- Khi xác định độ lún lệch tương đối S/L nói ở điểm 8, L là khoảng cách giữa 2 trục block móng theo hướng tải trọng ngang, còn ở các trụ kéo dây - là khoảng cách giữa các trục của móng chịu nén và neo.

- Nếu nền gồm các lớp đất nằm ngang (với độ dốc không quá 0,1) thì trị giới hạn về độ lún lớn nhất và độ lún trung bình cho phép tăng lên 20%.

- Đối với các công trình nói ở điểm 2 và 3 có móng dạng bè thì trị giới hạn của độ lún trung bình cho phép tăng lên 1,5 lần.

- Trên cơ sở tổng kết kinh nghiệm thiết kế, xây dựng và khai thác các loại công trình khác nhau, cho phép lấy trị biến dạng giới hạn của nền khác với trị cho ở bảng này.



Bảng 5 - Giới hạn biến dạng góc

f/L

Trạng thái giới hạn

1/5000

Vết rạn li ti quan sát thấy trong công trình bằng gạch không cốt thép; các tường chịu lực bị cong

1/3000

Các vết nứt nhìn thấy ở các tường chịu lực

1/1000

Các vết nứt nhìn thấy ở các tường gạch chèn khung

1/750

Giới hạn thực tế để ngăn chặn sự mất cân bằng của máy móc có độ chính xác cao

1/600

Mức vượt ứng suất cho phép trong các tiết diện nghiêng trở nên đáng kể

1/500

Giới hạn thực tế để ngăn chặn các vết nứt trầm trọng trong nhà khung và công trình hiện đại

1/300

Hư hại công trình và tường tấm lớn, gây trở ngại cho di chuyển của các cần trục trên cao

1/250

Nghiêng đáng chú ý trong các nhà nhiều tầng

1/150

Hư hại đến kết cấu đối với hầu hết công trình

CHÚ THÍCH:

- Đối với công trình bình thường, biến dạng góc giới hạn lấy nhỏ hơn 1/500;

- Cần tránh hư hại khi các khe nứt nhìn thấy được nếu biến dạng góc nhỏ hơn 1/1000;

- Hư hại của công trình ít xảy ra với giá trị f/L < 1/150.



Bảng 6 - Một số biện pháp khắc phục xuống cấp do nguyên nhân nền móng

Cơ chế xuống cấp

Biện pháp khắc phục

Ghi chú

1. Đất nền không đủ khả năng chịu tải

- Gia cố nông (Mở rộng móng, hố đào…)

Đất nền tương đối tốt

- Gia cố sâu (móng cọc)

Đất yếu

2. Kết cấu móng không đủ khả năng chịu tải

- Sửa chữa kết cấu móng




3. Độ lún tuyệt đối lớn

- Gia cố sâu (có thể kết hợp với giảm tải)

Nếu độ lún lệch nhỏ và có thể khắc phục ảnh hưởng của độ lún đối với hoạt động của công trình thì không cần gia cường

4. Độ lún lệch lớn

- Gia cố sâu (có thể kết hợp với gia cường kết cấu và giảm tải)

Có thể nghiên cứu biện pháp cắt tách kết cấu

5. Hạ mực nước ngầm

- Gia cố sâu (móng cọc)

Cần áp dụng biện pháp hạn chế ma sát âm

6. Lún ảnh hưởng

- Gia cố sâu (có thể kết hợp với gia cường kết cấu)

- Cừ ngăn lún






6.2.4.3. Một số phương pháp gia cố nông và gia cường kết cấu

6.2.4.3.1. Mở rộng móng

Mục đích của phương pháp mở rộng móng là tăng diện tích móng, qua đó giảm áp lực tác dụng lên đất nền tại đấy móng. Phương pháp này thường được áp dụng khi đất nền dưới móng có khả năng chịu tải cao và trong phạm vi ảnh hưởng của tải trọng công trình không có những lớp đất yếu.

Việc lựa chọn biện pháp mở rộng móng phụ thuộc vào điều kiện cụ thể của mỗi công trình. Trong thiết kế cần lưu ý đến liên kết giữa phần móng móng mở rộng với kết cấu móng cũ. Các biện pháp đơn giản nhưng khá hiệu quả để tăng cường liên kết là đục nhám bề mặt tiếp xúc, khoan để đặt neo thép. Kỹ thuật ép trước (gia tải trước) có thể được sử dụng để phần móng mới có thể làm việc tốt ngay sau khi thi công.

Một số ví dụ về mở rộng móng được thể hiện trên Hình 13. Để thực hiện công việc này, một số lỗ được khoan qua tường để đặt cốt thép chủ, sau đó thi công phần mở rộng bằng bê tông cốt thép. Độ sâu đặt móng được xác định theo điều kiện đất nền và yêu cầu sử dụng của công trình. Móng đặt càng nông thì càng dễ thi công.



CHÚ DẪN:


1 Cột

2 Móng mở rộng

3 Móng cũ

4 Đất đầm chặt

5 Dầm gánh

Hình 13 - Mở rộng móng - Liên kết bằng bê tông cốt thép

Hình 14 thể hiện thiết kế mở rộng móng trong đó tải trọng của kết cấu được truyền sang móng thông qua dầm gánh bằng thép.



CHÚ DẪN:


1 Cột

2 Móng mở rộng

3 Móng cũ

4 Thép hình

5 Dầm gánh

Hình 14 - Mở rộng móng - Liên kết bằng thép hình

Hình 15 là một ví dụ mở rộng móng tường trong đó có sử dụng neo thép và chốt bê tông cốt thép để liên kết phần bê tông mở rộng vào móng cũ.



CHÚ DẪN:


1 Tường bê tông cốt thép

2 Móng mở rộng

3 Móng cũ

4 Chốt thép



Hình 15 - Mở rộng móng - Liên kết bằng neo và chốt

6.2.4.3.2. Gia cường bằng hố đào

Phương pháp này có thể áp dụng trong đất tương đối khô do vách hố đào không có khả năng bị sát lở khi đào. Nguyên lý của phương pháp này là tăng độ sâu đặt móng bằng cách thực hiện hố đào dưới móng cũ cho đến độ sâu gặp lớp đất tốt. Quá trình thi công được bắt đầu bằng cách đào một hố bên cạnh móng cũ (Hình 16a). Từ hố này người ta tiến hành đào hố dưới đáy móng cho tới độ sâu gặp lớp đất tốt (Hình 16b). Kích thước hố thông thường bằng từ 700 mm đến 900 mm rồi đổ bê tông lấp đầy hố. Tùy theo tải trọng của công trình, các hố đào có thể được thi công tạo thành các trụ riêng biệt hoặc được thi công sát nhau tạo thành một tường liên tục. Nếu móng dưới tường là khối xây lớn hoặc là bằng bê tông cốt thép thì không cần bổ sung giằng đỡ tường trong khoảng giữa các trụ. Trường hợp móng không đủ cứng thì cần bổ sung giằng dưới đáy móng hoặc giằng kẹp hai bên tường.



6.2.4.3.3. Gia cường kết cấu bên trên

Gia cường kết cấu bên trên là biện pháp có thể được áp dụng khi các kết quả tính toán và quan trắc chứng tỏ độ lún còn lại của công trình là tương đối nhỏ. Nội dung của phương pháp này là tăng cường độ cứng của kết cấu công trình bằng cách bổ sung một số giằng thép hoặc bê tông cốt thép tại các vị trí thích hợp để tiếp thu các nội lực phát sinh khi công trình bị lún không đều. Vị trí đặt các giằng phụ thuộc vào công trình chịu lún võng (Hình 17a) hay lún vồng (Hình 17b):



CHÚ DẪN:


1 Cột, tường bê tông cốt thép

2 Móng cũ

3 Hố đào

4 Đào và cừ dưới hố móng

5 Đặt cốt pha và đổ bê tông

Hình 16 - Gia cố móng bằng hố đào



Hình 17 - Dạng lún của công trình

- Trường hợp lún võng (vết nứt phát triển từ phía dưới) thì hệ thống giằng nên bố trí ở móng dưới dạng giằng kẹp hai bên cổ móng hoặc cũng có thể sử dụng kỹ thuật Pynford để thi công giằng trong tường.

- Trường hợp lún vồng (vết nứt phát triển từ phía mái) thì hệ thống giằng nên bố trí ở phía trên (cao trình mái).

Để hệ thống giằng gia cường có thể làm việc tốt ngay sau khi thi công, nên kéo căng thép trước khi đổ bê tông.

Các vết nứt trên kết cấu của công trình cần được sửa chữa bằng cách đục bỏ vật liệu đã bị nứt vỡ sau đó phục hồi lại bằng bê tông hoặc vữa cường độ cao và không co.

6.2.4.4. Gia cường bằng móng sâu

Phương pháp gia cường bằng móng sâu được áp dụng khi phương pháp mở rộng móng không đáp ứng được yêu cầu kỹ thuật, đặc biệt khi trong phạm vi độ sâu ảnh hưởng của tải trọng công trình tồn tại các lớp đất yếu. Nguyên lý của phương pháp này là dùng cọc đưa tải trọng của công trình xuống các lớp đất cứng nằm ở độ sâu lớn. Độ lún của công trình sau khi cọc được liên kết vào móng thường rất nhỏ.

Với các công nghệ thi công hiện có, phương pháp gia cường bằng móng sâu có thể áp dụng được trong hầu hết các điều kiện đất nền thường gặp trong thực tế, kể cả những trường hợp mặt bằng thi công cọc chật hẹp và bị hạn chế về chiều cao thao tác. Công nghệ thi công thông dụng hiện nay là sử dụng kích ép cọc với đối tải là trọng lượng của công trình.

Một số vấn đề cần lưu ý khi thực hiện thiết kế gia cố bằng phương pháp ép sau là:

- Khoảng cách từ cọc đến tường hoặc cột là tối thiểu (trong phạm vi công nghệ thi công cho phép);

- Tiết diện cọc và độ sâu ép cọc xác định theo lực ép lớn nhất, Pmax, cho phép tác dụng lên công trình khi thi công. Lực này được xác định theo trọng lượng và độ cứng của kết cấu công trình;

- Neo ép cọc cần được thiết kế với hệ số an toàn FS lớn hơn 2;

- Cần chú ý đến tải trọng thi công ép cọc khi thiết kế hệ thống giằng móng.

Móng bê tông cốt thép dưới các cột hoặc tường bê tông cốt thép có thể là móng đơn, móng băng hoặc móng bè. Giải pháp thiết kế gia cường các loại móng này bằng cọc thường được sử dụng là:

- Đối với móng đơn: Nếu bề rộng móng tương đối nhỏ thì có thể bố trí cọc ra phía ngoài móng. Ngược lại khi bề rộng đáy móng lớn thì phải khoan dẫn qua bê tông để có thể ép cọc;

- Đối với móng băng: Nếu bề rộng móng tương đối nhỏ thì có thể bố trí cọc hai bên móng tương tự như trường hợp móng dưới tường chịu lực. Nếu bề rộng móng khá lớn thì phải áp dụng biện pháp khoan dẫn qua bê tông bản móng để ép cọc;

- Đối với móng bè: Trong trường hợp này việc khoan dẫn qua bê tông là bắt buộc. Khi bố trí cọc cần lưu ý tránh khoan dẫn vào các sườn móng (nếu có).

Neo ép cọc có thể được liên kết vào hệ thống đài giằng hoặc vào hệ thống dầm thép tạm thời được lắp đặt phục vụ mục đích ép cọc và được thu hồi ngay sau khi kết thúc ép cọc. Các ưu điểm và nhược điểm của từng biện pháp thi công nêu trên như sau:

- Khi sử dụng hệ thống neo cố định:

+ Neo và đài giằng ổn định, dễ dàng ép cọc thẳng đứng;

+ Vị trí ép cọc khó thay đổi;

+ Thời gian từ khi thi công đài giằng đến khi ép dài (lớn hơn 15 ngày);

+ Chi phí cao vì hệ thống đài giằng được thiết kế chịu tải trọng thi công cao hơn nhiều so với tải trọng thiết kế;

+ Không thu hồi được neo.

- Khi sử dụng hệ thống dầm thép tạm thời:

+ Dễ dàng điều chỉnh vị trí ép cọc cho phù hợp với điều kiện thực tế, đặc biệt là khi cần bổ sung cọc;

+ Có thể bắt đầu ép cọc ngay sau khi lắp đặt hệ dầm;

+ Dầm được thu hồi ngay sau khi ép cọc;

+ Kém ổn định;

+ Dễ gây hư hại kết cấu công trình cũ do ép cục bộ tại vị trí truyền tải từ dầm thép sang kết cấu.

Hình 18 thể hiện một ví dụ về cấu tạo hệ thống đài cọc sử dụng trong gia cố móng của kết cấu khung. Để tăng cường bám dính giữa hệ móng mới và cổ móng, nên đục nhám bề mặt bê tông móng cũ và có thể tăng cường một số neo liên kết. Khoảng cách giữa các neo thép thông thường từ 20 cm đến 30 cm. Nên bổ sung giằng giữa các cột của công trình nếu móng cũ không có hệ thống giằng hoặc hệ thống giằng cũ không đủ cứng.



6.2.4.5. Sửa chữa kết cấu bị hư hỏng do lún nền móng

Việc sửa chữa kết cấu bên trên bị xuống cấp do nguyên nhân lún nền móng được thực hiện sau khi đã hoàn thành biện pháp gia cường nền móng. Một số phương pháp sửa chữa được trình bày trong 6.1.4.



6.2.5. Ghi chép và lưu giữ hồ sơ

Các hồ sơ về khảo sát, thiết kế, và thi công cần được tập hợp và lưu trữ lâu dài.

Trong quá trình thi công cần thực hiện ghi chép và lập hồ sơ theo qui định của các tiêu chuẩn TCVN 4055:2012; TCVN 9361:2012; TCVN 4453:1995 và TCVN 4085:1985.

CHÚ DẪN:


1 Cột

2 Neo


3 Lỗ chờ hình côn

4 Đài cọc mới

5 Cọc

6 Móng cũ



Hình 18 - Gia cố móng dưới cột hoặc tường bê tông cốt thép

6.3. Sửa chữa kết cấu hư hỏng do tác động của điều kiện khí hậu nóng ẩm

6.3.1. Nguyên tắc chung

Mục này hướng dẫn kiểm tra chi tiết, xác định cơ chế và mức độ xuống cấp và các biện pháp sửa chữa hoặc gia cường kết cấu hư hỏng do tác động của các điều kiện khí hậu nóng ẩm (như nhiệt độ và độ ẩm không khí, bức xạ mặt trời, mưa gió, bão…).

Các kết cấu trong công trình xây dựng chịu tác động trực tiếp của các điều kiện khí hậu là các kết cấu lộ thiên, gồm có:

- Mái bê tông cốt thép;

- Khung bê tông cốt thép (dầm, cột) ngoài trời;

- Tường bê tông cốt thép ngoài trời (tường ngoài, tường chắn mái, tường bể nước, thành silo).

Dấu hiệu xuống cấp: dấu hiệu xuống cấp các kết cấu nêu trên gồm có:

- Nứt bê tông;

- Thấm nước mưa;

- Rêu mốc;

- Cacbonat hóa.

Dấu hiệu các bô nát hóa đã được chỉ dẫn ở 6.4. Trong mục này, việc kiểm tra chi tiết và hoạt động sửa chữa chỉ tiến hành với 3 dấu hiệu còn lại.

Nguyên nhân xuống cấp:

- Tình trạng nứt kết cấu bê tông: kết cấu bê tông cốt thép có thể bị nứt dưới tác động của khí hậu nóng ẩm do các nguyên nhân sau:

+ Biến dạng nhiệt ẩm quá lớn do thiếu khe co dãn nhiệt ẩm;

+ Thiếu cốt thép âm;

+ Cốt thép chủ bị rỉ do hiện tượng cacbonat hóa bê tông, làm nứt lớp bảo vệ của bê tông;

+ Kết cấu không đủ độ cứng chịu lực;

+ Không tính đủ tải trọng nhiệt môi trường khi thiết kế.

- Thấm nước: kết cấu mái hoặc tường bê tông cốt thép bị thấm nước có thể do những nguyên nhân sau:

+ Kết cấu bị nứt (mái bê tông cốt thép, sênô, ô văng, tường…);

+ Bê tông kết cấu không có khả năng ngăn nước (mác bê tông thấp, đầm không chặt, bị rỗ…);

+ Bị phá vỡ liên kết các chi tiết kỹ thuật qua kết cấu (như đường ống, dây thu lôi, cáp điện…);

+ Bị hỏng màng chắn nước trên mặt kết cấu (lớp láng vữa xi măng cát; lớp sơn chống thấm hay lớp giấy dầu, giấy cao su).

- Tình trạng rêu mốc: rêu mốc xuất hiện khi có đồng thời 2 yếu tố sau đây:

+ Tích ẩm;

+ Tồn tại vi sinh vật gây mốc.

Thiếu một trong hai yếu tố này thì không có rêu mốc.




tải về 0.7 Mb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5   6   7   8   9   10




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương