Chương 1 Sơ lược lịch sử phát triển của mạng máy tính


II. Mô hình truyền thông đơn giản 3 tầng



tải về 0.89 Mb.
trang2/12
Chuyển đổi dữ liệu27.07.2016
Kích0.89 Mb.
#7765
1   2   3   4   5   6   7   8   9   ...   12

II. Mô hình truyền thông đơn giản 3 tầng

Nói chung trong truyền thông có sự tham gia của các thành phần: các chương trình ứng dụng, các chương trình truyền thông, các máy tính và các mạng. Các chương trình ứng dụng là các chương trình của người sử dụng được thực hiện trên máy tính và có thể tham gia vào quá trình trao đổi thông tin giữa hai máy tính. Trên một máy tính với hệ điều hành đa nhiệm (như Windows, UNIX) thường được thực hiện đồng thời nhiều ứng dụng trong đó có những ứng dụng liên quan đến mạng và các ứng dụng khác. Các máy tính được nối với mạng và các dữ liệu được trao đổi thông qua mạng từ máy tính này đến máy tính khác.

Việc gửi dữ liệu được thực hiện giữa một ứng dụng với một ứng dụng khác trên hai máy tính khác nhau thông qua mạng được thực hiện như sau: Ứng dụng gửi chuyển dữ liệu cho chương trình truyền thông trên máy tính của nó, chương trình truyền thông sẽ gửi chúng tới máy tính nhận. Chương trình truyền thông trên máy nhận sẽ tiếp nhận dữ liệu, kiểm tra nó trước khi chuyển giao cho ứng dụng đang chờ dữ liệu.

Với mô hình truyền thông đơn giản người ta chia chương trình truyền thông thành ba tầng không phụ thuộc vào nhau là: tầng ứng dụng, tầng chuyển vận và tầng tiếp cận mạng.



Tầng tiếp cận mạng liên quan tới việc trao đổi dữ liệu giữa máy tính và mạng mà nó được nối vào. Để dữ liệu đến được đích máy tính gửi cần phải chuyển địa chỉ của máy tính nhận cho mạng và qua đó mạng sẽ chuyển các thông tin tới đích. Ngoài ra máy gửi có thể sử dụng một số phục vụ khác nhau mà mạng cung cấp như gửi ưu tiên, tốc độ cao. Trong tầng này có thể có nhiều phần mềm khác nhau được sử dụng phụ thuộc vào các loại của mạng ví dụ như mạng chuyển mạch, mạng chuyển mạch gói, mạng cục bộ.

Tầng truyền dữ liệu thực hiện quá trình truyền thông không liên quan tới mạng và nằm ở trên tầng tiếp cận mạng. Tầng truyền dữ liệu không quan tâm tới bản chất các ứng dụng đang trao đổi dữ liệu mà quan tâm tới làm sao cho các dữ liệu được trao đổi một cách an toàn. Tầng truyền dữ liệu đảm bảo các dữ liệu đến được đích và đến theo đúng thứ tự mà chúng được xử lý. Trong tầng truyền dữ liệu người ta phải có những cơ chế nhằm đảm bảo sự chính xác đó và rõ ràng các cơ chế này không phụ thuộc vào bản chất của từng ứng dụng và chúng sẽ phục vụ cho tất cả các ứng dụng.

Tầng ứng dụng sẽ chứa các module phục vụ cho tất cả những ứng dụng của người sử dụng. Với các loại ứng dụng khác nhau (như là truyền file, truyền thư mục) cần các module khác nhau.



Hình 3.2 Mô hình truyền thông 3 tầng

Trong một mạng với nhiều máy tính, mỗi máy tính một hay nhiều ứng dụng thực hiện đồng thời (Tại đây ta xét trên một máy tính trong một thời điểm có thể chạy nhiều ứng dụng và các ứng dụng đó có thể thực hiện đồng thời việc truyền dữ liệu qua mạng). Một ứng dụng khi cần truyền dữ liệu qua mạng cho một ứng dụng khác cần phải gọi 1 module tầng ứng dụng của chương trình truyền thông trên máy của mình, đồng thời ứng dụng kia cũng sẽ gọi 1 module tầng ứng dụng trên máy của nó. Hai module ứng dụng sẽ liên kết với nhau nhằm thực hiện các yêu cầu của các chương trình ứng dụng.

Các ứng dụng đó sẽ trao đổi với nhau thông qua mạng, tuy nhiên trong 1 thời điểm trên một máy có thể có nhiều ứng dụng cùng hoạt động và để việc truyền thông được chính xác thì các ứng dụng trên một máy cần phải có một địa chỉ riêng biệt. Rõ ràng cần có hai lớp địa chỉ:

Mỗi máy tính trên mạng cần có một địa chỉ mạng của mình, hai máy tính trong cùng một mạng không thể có cùng địa chỉ, điều đó cho phép mạng có thể truyền thông tin đến từng máy tính một cách chính xác.

Mỗi một ứng dụng trên một máy tính cần phải có địa chỉ phân biệt trong máy tính đo. Nó cho phép tầng truyền dữ liệu giao dữ liệu cho đúng ứng dụng đang cần. Địa chỉ đó được gọi là điểm tiếp cận giao dịch. Điều đó cho thấy mỗi một ứng dụng sẽ tiếp cận các phục vụ của tầng truyền dữ liệu một cách độc lập.

Các module cùng một tầng trên hai máy tính khác nhau sẽ trao đổi với nhau một cách chặt chẽ theo các qui tắc xác định trước được gọi là giao thức. Một giao thức được thể hiện một cách chi tiết bởi các chức năng cần phải thực hiện như các giá trị kiểm tra lỗi, việc định dạng các dữ liệu, các quy trình cần phải thực hiện để trao đổi thông tin.



Hình 3.3 Ví dụ mô hình truyền thông đơn giản

Chúng ta hãy xét trong ví dụ (như hình vẽ trên): giả sử có ứng dụng có điểm tiếp cận giao dịch 1 trên máy tính A muốn gửi thông tin cho một ứng dụng khác trên máy tính B có điểm tiếp cận giao dịch 2. Úng dụng trên máy tính A chuyển các thông tin xuống tầng truyền dữ liệu của A với yêu cầu gửi chúng cho điểm tiếp cận giao dịch 2 trên máy tính B. Tầng truyền dữ liệu máy A sẽ chuyển các thông tin xuống tầng tiếp cận mạng máy A với yêu cầu chuyển chúng cho máy tính B (Chú ý rằng mạng không cần biết địa chỉ của điểm tiếp cận giao dịch mà chỉ cần biết địa chỉ của máy tính B). Để thực hiện quá trình này, các thông tin kiểm soát cũng sẽ được truyền cùng với dữ liệu.

Đầu tiên khi ứng dụng 1 trên máy A cần gửi một khối dữ liệu nó chuyển khối đó cho tầng vận chuyển. Tầng vận chuyển có thể chia khối đó ra thành nhiều khối nhỏ phụ thuộc vào yêu cầu của giao thức của tầng và đóng gói chúng thành các gói tin (packet). Mỗi một gói tin sẽ được bổ sung thêm các thông tin kiểm soát của giao thức và được gọi là phần đầu (Header) của gói tin. Thông thường phần đầu của gói tin cần có:

Địa chỉ của điểm tiếp cận giao dịch nơi đến (Ở đây là 3): khi tầng vận chuyển của máy B nhận được gói tin thì nó biết được ứng dụng nào mà nó cần giao.

Số thứ tự của gói tin, khi tầng vận chuyển chia một khối dữ liệu ra thành nhiều gói tin thì nó cần phải đánh số thứ tự các gói tin đó. Nếu chúng đi đến đích nếu sai thứ tự thì tầng vận chuyển của máy nhận có thể phát hiện và chỉnh lại thứ tự. Ngoài ra nếu có lỗi trên đường truyền thì tầng vận chuyển của máy nhận sẽ phát hiện ra và yêu cầu gửi lại một cách chính xác.

Mã sửa lỗi: để đảm bảo các dữ liệu được nhận một cách chính xác thì trên cơ sở các dữ liệu của gói tin tầng vận chuyển sẽ tính ra một giá trị theo một công thức có sãn và gửi nó đi trong phần đầu của gói tin. Tầng vận chuyển nơi nhận thông qua giá trị đó xác định được gói tin đó có bị lỗi trên đường truyền hay không.

Bước tiếp theo tầng vận chuyển máy A sẽ chuyển từng gói tin và địa chỉ của máy tính đích (ở đây là B) xuống tầng tiếp cận mạng với yêu cầu chuyển chúng đi. Để thực hiện được yêu cầu này tầng tiếp cận mạng cũng tạo các gói tin của mình trước khi truyền qua mạng. Tại đây giao thức của tầng tiếp cận mạng sẽ thêm các thông tin điều khiển vào phần đầu của gói tin mạng.





Hình 3.4: Mô hình thiết lập gói tin

Trong phần đầu gói tin mạng sẽ bao gồm địa chỉ của máy tính nhận, dựa trên địa chỉ này mạng truyền gói tin tới đích. Ngoài ra có thể có những thông số như là mức độ ưu tiên.

Như vậy thông qua mô hình truyền thông đơn giản chúng ta cũng có thể thấy được phương thức hoạt động của các máy tính trên mạng, có thể xây dựng và thay đổi các giao thức trong cùng một tầng.

III. Các nhu cầu về chuẩn hóa đối với mạng

Trong phần trên chúng ta đã xem xét một mô hình truyền thông đơn giản, trong thực tế việc phân chia các tầng như trong mô hình trên thực sự chưa đủ. Trên thế giới hiện có một số cơ quan định chuẩn, họ đưa ra hàng loạt chuẩn về mạng tuy các chuẩn đó có tính chất khuyến nghị chứ không bắt buộc nhưng chúng rất được các cơ quan chuẩn quốc gia coi trọng.

Hai trong số các cơ quan chuẩn quốc tế là:

ISO (The International Standards Organization) - Là tổ chức tiêu chuẩn quốc tế hoạt động dưới sự bảo trợ của Liên hợp Quốc với thành viên là các cơ quan chuẩn quốc gia với số lượng khoảng hơn 100 thành viên với mục đích hỗ trợ sự phát triển các chuẩn trên phạm vi toàn thế giới. Một trong những thành tựu của ISO trong lãnh vực truyền thông là mô hình hệ thống mở (Open Systems Interconnection - gọi tắt là OSI).

CCITT (Commité Consultatif International pour le Telegraphe et la Téléphone) - Tổ chức tư vấn quốc tế về điện tín và điện thoại làm việc dưới sự bảo trợ của Liên Hiệp Quốc có trụ sở chính tại Geneva - Thụy sỹ. Các thành viên chủ yếu là các cơ quan bưu chính viễn thông các quốc gia. Tổ chức này có vai trò phát triển các khuyến nghị trong các lãnh vực viễn thông.

IV. Một số mô hình chuẩn hóa

1. Mô hình OSI (Open Systems Interconnection)

Mô hình OSI là một cơ sở dành cho việc chuẩn hoá các hệ thống truyền thông, nó được nghiên cứu và xây dựng bởi ISO. Việc nghiên cứu về mô hình OSI được bắt đầu tại ISO vào năm 1971 với mục tiêu nhằm tới việc nối kết các sản phẩm của các hãng sản xuất khác nhau và phối hợp các hoạt động chuẩn hoá trong các lĩnh vực viễn thông và hệ thống thông tin. Theo mô hình OSI chương trình truyền thông được chia ra thành 7 tầng với những chức năng phân biệt cho từng tầng. Hai tầng đồng mức khi liên kết với nhau phải sử dụng một giao thức chung. Trong mô hình OSI có hai loại giao thức chính được áp dụng: giao thức có liên kết (connection - oriented) và giao thức không liên kết (connectionless)



Giao thức có liên kết: trước khi truyền dữ liệu hai tầng đồng mức cần thiết lập một liên kết logic và các gói tin được trao đổi thông qua liên kết náy, việc có liên kết logic sẽ nâng cao độ an toàn trong truyền dữ liệu.

Giao thức không liên kết: trước khi truyền dữ liệu không thiết lập liên kết logic và mỗi gói tin được truyền độc lập với các gói tin trước hoặc sau nó.

Nhiệm vụ của các tầng trong mô hình OSI:



Tầng ứng dụng (Application layer): tầng ứng dụng quy định giao diện giữa người sử dụng và môi trường OSI, nó cung cấp các phương tiện cho người sử dụng truy cập vả sử dụng các dịch vụ củ mô hình OSI.

Tầng trình bày (Presentation layer): tầng trình bày chuyển đổi các thông tin từ cú pháp người sử dụng sang cú pháp để truyền dữ liệu, ngoài ra nó có thể nén dữ liệu truyền và mã hóa chúng trước khi truyền đễ bảo mật.

Tầng giao dịch (Session layer): tầng giao dịch quy định một giao diện ứng dụng cho tầng vận chuyển sử dụng. Nó xác lập ánh xa giữa các tên đặt địa chỉ, tạo ra các tiếp xúc ban đầu giữa các máy tính khác nhau trên cơ sở các giao dịch truyền thông. Nó đặt tên nhất quán cho mọi thành phần muốn đối thoại riêng với nhau.

Tầng vận chuyển (Transport layer): tầng vận chuyển xác định địa chỉ trên mạng, cách thức chuyển giao gói tin trên cơ sở trực tiếp giữa hai đầu mút (end-to-end). Để bảo đảm được việc truyền ổn định trên mạng tầng vận chuyển thường đánh số các gói tin và đảm bảo chúng chuyển theo thứ tự.



Hình 3.5: Mô hình 7 tầng OSI

Chương 4

Mô hình kết nối các hệ thống mở

Open Systems Interconection

Việc nghiên cứu về OSI được bắt đầu tại ISO vào năm 1971 với các mục tiêu nhằm nối kết các sản phẩm của các hãng sản xuất khác. Ưu điểm chính của OSI là ở chỗ nó hứa hẹn giải pháp cho vấn đề truyền thông giữa các máy tính không giống nhau. Hai hệ thống, dù có khác nhau đều có thể truyền thông với nhau một các hiệu quả nếu chúng đảm bảo những điều kiện chung sau đây:

Chúng cài đặt cùng một tập các chức năng truyền thông.

Các chức năng đó được tổ chức thành cùng một tập các tầng. các tầng đồng mức phải cung cấp các chức năng như nhau.

Các tầng đồng mức khi trao đổi với nhau sử dụng chung một giao thức

Mô hình OSI tách các mặt khác nhau của một mạng máy tính thành bảy tầng theo mô hình phân tầng. Mô hình OSI là một khung mà các tiêu chuẩn lập mạng khác nhau có thể khớp vào. Mô hình OSI định rõ các mặt nào của hoạt động của mạng có thể nhằm đến bởi các tiêu chuẩn mạng khác nhau. Vì vậy, theo một nghĩa nào đó, mô hình OSI là một loại tiêu chuẩn của các chuẩn.



I. Nguyên tắc sử dụng khi định nghĩa các tầng hệ thống mở:

Sau đây là các nguyên tắc mà ISO quy định dùng trong quá trình xây dựng mô hình OSI



Không định nghĩa quá nhiều tầng để việc xác định và ghép nối các tầng không quá phức tạp.

Tạo các ranh giới các tầng sao cho việc giải thích các phục vụ và số các tương tác qua lại hai tầng là nhỏ nhất.

Tạo các tầng riêng biệt cho các chức năng khác biệt nhau hoàn toàn về kỹ thuật sử dụng hoặc quá trình thực hiên.

Các chức năng giống nhau được đặt trong cùng một tầng.

Lựa chọn ranh giới các tầng tại các điểm mà những thử nghiệm trong quá khứ thành công.

Các chức năng được xác định sao cho chúng có thể dễ dàng xác định lại, và các nghi thức của chúng có thể thay đổi trên mọi hướng.

Tạo ranh giới các tầng mà ở đó cần có những mức độ trừu tượng khác nhau trong việc sử dụng số liệu.

Cho phép thay đổi các chức năng hoặc giao thức trong tầng không ảnh hưởng đến các tầng khác.

Tạo các ranh giới giữa mỗi tầng với tầng trên và dưới nó.

II. Các giao thức trong mô hình OSI

Trong mô hình OSI có hai loại giao thức chính được áp dụng: giao thức có liên kết (connection - oriented) và giao thức không liên kết (connectionless).



Giao thức có liên kết: trước khi truyền dữ liệu hai tầng đồng mức cần thiết lập một liên kết logic và các gói tin được trao đổi thông qua liên kết náy, việc có liên kết logic sẽ nâng cao độ an toàn trong truyền dữ liệu.

Giao thức không liên kết: trước khi truyền dữ liệu không thiết lập liên kết logic và mỗi gói tin được truyền độc lập với các gói tin trước hoặc sau nó.

Như vậy với giao thức có liên kết, quá trình truyền thông phải gồm 3 giai đoạn phân biệt:



Thiết lập liên kết (logic): hai thực thể đồng mức ở hai hệ thống thương lượng với nhau về tập các tham số sẽ sử dụng trong giai đoạn sau (truyền dữ liệu).

Truyền dữ liệu: dữ liệu được truyền với các cơ chế kiểm soát và quản lý kèm theo (như kiểm soát lỗi, kiểm soát luồng dữ liệu, cắt/hợp dữ liệu...) để tăng cường độ tin cậy và hiệu quả của việc truyền dữ liệu.

Hủy bỏ liên kết (logic): giải phóng tài nguyên hệ thống đã được cấp phát cho liên kết để dùng cho liên kết khác.

Đối với giao thức không liên kết thì chỉ có duy nhất một giai đoạn truyền dữ liệu mà thôi.

Gói tin của giao thức: Gói tin (Packet) được hiểu như là một đơn vị thông tin dùng trong việc liên lạc, chuyển giao dữ liệu trong mạng máy tính. Những thông điệp (message) trao đổi giữa các máy tính trong mạng, được tạo dạng thành các gói tin ở máy nguồn. Và những gói tin này khi đích sẽ được kết hợp lại thành thông điệp ban đầu. Một gói tin có thể chứa đựng các yêu cầu phục vụ, các thông tin điều khiển và dữ liệu.



Hình 4.1: Phương thức xác lập các gói tin trong mô hình OSI

Trên quan điểm mô hình mạng phân tầng tầng mỗi tầng chỉ thực hiện một chức năng là nhận dữ liệu từ tầng bên trên để chuyển giao xuống cho tầng bên dưới và ngược lại. Chức năng này thực chất là gắn thêm và gỡ bỏ phần đầu (header) đối với các gói tin trước khi chuyển nó đi. Nói cách khác, từng gói tin bao gồm phần đầu (header) và phần dữ liệu. Khi đi đến một tầng mới gói tin sẽ được đóng thêm một phần đầu đề khác và được xem như là gói tin của tầng mới, công việc trên tiếp diễn cho tới khi gói tin được truyền lên đường dây mạng để đến bên nhận.

Tại bên nhận các gói tin được gỡ bỏ phần đầu trên từng tầng tướng ứng và đây cũng là nguyên lý của bất cứ mô hình phân tầng nào.

Chú ý: Trong mô hình OSI phần kiểm lỗi của gói tin tầng liên kết dữ liệu đặt ở cuối gói tin

 

III. Các chức năng chủ yếu của các tầng của mô hình OSI.



Tầng 1: Vật lý (Physical)

Tầng vật lý (Physical layer) là tầng dưới cùng của mô hình OSI là. Nó mô tả các đặc trưng vật lý của mạng: Các loại cáp được dùng để nối các thiết bị, các loại đầu nối được dùng , các dây cáp có thể dài bao nhiêu v.v... Mặt khác các tầng vật lý cung cấp các đặc trưng điện của các tín hiệu được dùng để khi chuyển dữ liệu trên cáp từ một máy này đến một máy khác của mạng, kỹ thuật nối mạch điện, tốc độ cáp truyền dẫn.

Tầng vật lý không qui định một ý nghĩa nào cho các tín hiệu đó ngoài các giá trị nhị phân 0 và 1. Ở các tầng cao hơn của mô hình OSI ý nghĩa của các bit được truyền ở tầng vật lý sẽ được xác định.

Ví dụ: Tiêu chuẩn Ethernet cho cáp xoắn đôi 10 baseT định rõ các đặc trưng điện của cáp xoắn đôi, kích thước và dạng của các đầu nối, độ dài tối đa của cáp.

Khác với các tầng khác, tầng vật lý là không có gói tin riêng và do vậy không có phần đầu (header) chứa thông tin điều khiển, dữ liệu được truyền đi theo dòng bit. Một giao thức tầng vật lý tồn tại giữa các tầng vật lý để quy định về phương thức truyền (đồng bộ, phi đồng bộ), tốc độ truyền.

Các giao thức được xây dựng cho tầng vật lý được phân chia thành phân chia thành hai loại giao thức sử dụng phương thức truyền thông dị bộ (asynchronous) và phương thức truyền thông đồng bộ (synchronous).

Phương thức truyền dị bộ: không có một tín hiệu quy định cho sự đồng bộ giữa các bit giữa máy gửi và máy nhận, trong quá trình gửi tín hiệu máy gửi sử dụng các bit đặc biệt START và STOP được dùng để tách các xâu bit biểu diễn các ký tự trong dòng dữ liệu cần truyền đi. Nó cho phép một ký tự được truyền đi bất kỳ lúc nào mà không cần quan tâm đến các tín hiệu đồng bộ trước đó.

Phương thức truyền đồng bộ: sử dụng phương thức truyền cần có đồng bộ giữa máy gửi và máy nhận, nó chèn các ký tự đặc biệt như SYN (Synchronization), EOT (End Of Transmission) hay đơn giản hơn, một cái "cờ " (flag) giữa các dữ liệu của máy gửi để báo hiệu cho máy nhận biết được dữ liệu đang đến hoặc đã đến.

Tầng 2: Liên kết dữ liệu (Data link)

Tầng liên kết dữ liệu (data link layer) là tầng mà ở đó ý nghĩa được gán cho các bít được truyền trên mạng. Tầng liên kết dữ liệu phải quy định được các dạng thức, kích thước, địa chỉ máy gửi và nhận của mỗi gói tin được gửi đi. Nó phải xác định cơ chế truy nhập thông tin trên mạng và phương tiện gửi mỗi gói tin sao cho nó được đưa đến cho người nhận đã định.

Tầng liên kết dữ liệu có hai phương thức liên kết dựa trên cách kết nối các máy tính, đó là phương thức "một điểm - một điểm" và phương thức "một điểm - nhiều điểm". Với phương thức "một điểm - một điểm" các đường truyền riêng biệt được thiết lâp để nối các cặp máy tính lại với nhau. Phương thức "một điểm - nhiều điểm " tất cả các máy phân chia chung một đường truyền vật lý.



Hình 4.2: Các đường truyền kết nối kiểu "một điểm - một điểm" và "một điểm - nhiều điểm".

Tầng liên kết dữ liệu cũng cung cấp cách phát hiện và sửa lỗi cơ bản để đảm bảo cho dữ liệu nhận được giống hoàn toàn với dữ liệu gửi đi. Nếu một gói tin có lỗi không sửa được, tầng liên kết dữ liệu phải chỉ ra được cách thông báo cho nơi gửi biết gói tin đó có lỗi để nó gửi lại.

Các giao thức tầng liên kết dữ liệu chia làm 2 loại chính là các giao thức hướng ký tư và các giao thức hướng bit. Các giao thức hướng ký tự được xây dựng dựa trên các ký tự đặc biệt của một bộ mã chuẩn nào đó (như ASCII hay EBCDIC), trong khi đó các giao thức hướng bit lại dùng các cấu trúc nhị phân (xâu bit) để xây dựng các phần tử của giao thức (đơn vị dữ liệu, các thủ tục.) và khi nhận, dữ liệu sẽ được tiếp nhận lần lượt từng bit một.

Tầng 3: Mạng (Network)

Tầng mạng (network layer) nhắm đến việc kết nối các mạng với nhau bằng cách tìm đường (routing) cho các gói tin từ một mạng này đến một mạng khác. Nó xác định việc chuyển hướng, vạch đường các gói tin trong mạng, các gói này có thể phải đi qua nhiều chặng trước khi đến được đích cuối cùng. Nó luôn tìm các tuyến truyền thông không tắc nghẽn để đưa các gói tin đến đích.

Tầng mạng cung các các phương tiện để truyền các gói tin qua mạng, thậm chí qua một mạng của mạng (network of network). Bởi vậy nó cần phải đáp ứng với nhiều kiểu mạng và nhiều kiểu dịch vụ cung cấp bởi các mạng khác nhau. hai chức năng chủ yếu của tầng mạng là chọn đường (routing) và chuyển tiếp (relaying). Tầng mạng là quan trọng nhất khi liên kết hai loại mạng khác nhau như mạng Ethernet với mạng Token Ring khi đó phải dùng một bộ tìm đường (quy định bởi tầng mạng) để chuyển các gói tin từ mạng này sang mạng khác và ngược lại.

Đối với một mạng chuyển mạch gói (packet - switched network) - gồm tập hợp các nút chuyển mạch gói nối với nhau bởi các liên kết dữ liệu. Các gói dữ liệu được truyền từ một hệ thống mở tới một hệ thống mở khác trên mạng phải được chuyển qua một chuỗi các nút. Mỗi nút nhận gói dữ liệu từ một đường vào (incoming link) rồi chuyển tiếp nó tới một đường ra (outgoing link) hướng đến đích của dữ liệu. Như vậy ở mỗi nút trung gian nó phải thực hiện các chức năng chọn đường và chuyển tiếp.

Việc chọn đường là sự lựa chọn một con đường để truyền một đơn vị dữ liệu (một gói tin chẳng hạn) từ trạm nguồn tới trạm đích của nó. Một kỹ thuật chọn đường phải thực hiện hai chức năng chính sau đây:

Quyết định chọn đường tối ưu dựa trên các thông tin đã có về mạng tại thời điểm đó thông qua những tiêu chuẩn tối ưu nhất định.

Cập nhật các thông tin về mạng, tức là thông tin dùng cho việc chọn đường, trên mạng luôn có sự thay đổi thường xuyên nên việc cập nhật là việc cần thiết.



Hình 4. 3: Mô hình chuyển vận các gói tin trong mạng chuyễn mạch gói

Người ta có hai phương thức đáp ứng cho việc chọn đường là phương thức xử lý tập trung và xử lý tại chỗ.



Phương thức chọn đường xử lý tập trung được đặc trưng bởi sự tồn tại của một (hoặc vài) trung tâm điều khiển mạng, chúng thực hiện việc lập ra các bảng đường đi tại từng thời điểm cho các nút và sau đó gửi các bảng chọn đường tới từng nút dọc theo con đường đã được chọn đó. Thông tin tổng thể của mạng cần dùng cho việc chọn đường chỉ cần cập nhập và được cất giữ tại trung tâm điều khiển mạng.

Phương thức chọn đường xử lý tại chỗ được đặc trưng bởi việc chọn đường được thực hiện tại mỗi nút của mạng. Trong từng thời điểm, mỗi nút phải duy trì các thông tin của mạng và tự xây dựng bảng chọn đường cho mình. Như vậy các thông tin tổng thể của mạng cần dùng cho việc chọn đường cần cập nhập và được cất giữ tại mỗi nút.

Thông thường các thông tin được đo lường và sử dụng cho việc chọn đường bao gồm:



Trạng thái của đường truyền.

Thời gian trễ khi truyền trên mỗi đường dẫn.

Mức độ lưu thông trên mỗi đường.

Các tài nguyên khả dụng của mạng.

Khi có sự thay đổi trên mạng (ví dụ thay đổi về cấu trúc của mạng do sự cố tại một vài nút, phục hồi của một nút mạng, nối thêm một nút mới... hoặc thay đổi về mức độ lưu thông) các thông tin trên cần được cập nhật vào các cơ sở dữ liệu về trạng thái của mạng.

        Hiện nay khi nhu cầu truyền thông đa phương tiện (tích hợp dữ liệu văn bản, đồ hoạ, hình ảnh, âm thanh) ngày càng phát triển đòi hỏi các công nghệ truyền dẫn tốc độ cao nên việc phát triển các hệ thống chọn đường tốc độ cao đang rất được quan tâm.

Tầng 4: Vận chuyển (Transport)

Tầng vận chuyển cung cấp các chức năng cần thiết giữa tầng mạng và các tầng trên. nó là tầng cao nhất có liên quan đến các giao thức trao đổi dữ liệu giữa các hệ thống mở. Nó cùng các tầng dưới cung cấp cho người sử dụng các phục vụ vận chuyển.

Tầng vận chuyển (transport layer) là tầng cơ sở mà ở đó một máy tính của mạng chia sẻ thông tin với một máy khác. Tầng vận chuyển đồng nhất mỗi trạm bằng một địa chỉ duy nhất và quản lý sự kết nối giữa các trạm. Tầng vận chuyển cũng chia các gói tin lớn thành các gói tin nhỏ hơn trước khi gửi đi. Thông thường tầng vận chuyển đánh số các gói tin và đảm bảo chúng chuyển theo đúng thứ tự.

Tầng vận chuyển là tầng cuối cùng chịu trách nhiệm về mức độ an toàn trong truyền dữ liệu nên giao thức tầng vận chuyển phụ thuộc rất nhiều vào bản chất của tầng mạng. Người ta chia giao thức tầng mạng thành các loại sau:



  Mạng loại A: Có tỷ suất lỗi và sự cố có báo hiệu chấp nhận được (tức là chất lượng chấp nhận được). Các gói tin được giả thiết là không bị mất. Tầng vận chuyển không cần cung cấp các dịch vụ phục hồi hoặc sắp xếp thứ tự lại.

  Mạng loại B: Có tỷ suất lỗi chấp nhận được nhưng tỷ suất sự cố có báo hiệu lại không chấp nhận được. Tầng giao vận phải có khả năng phục hồi lại khi xẩy ra sự cố.

  Mạng loại C: Có tỷ suất lỗi không chấp nhận được (không tin cậy) hay là giao thức không liên kết. Tầng giao vận phải có khả năng phục hồi lại khi xảy ra lỗi và sắp xếp lại thứ tự các gói tin.

Trên cơ sở loại giao thức tầng mạng chúng ta có 5 lớp giao thức tầng vận chuyển đó là:



  Giao thức lớp 0 (Simple Class - lớp đơn giản): cung cấp các khả năng rất đơn giản để thiết lập liên kết, truyền dữ liệu và hủy bỏ liên kết trên mạng "có liên kết" loại A. Nó có khả năng phát hiện và báo hiệu các lỗi nhưng không có khả năng phục hồi.

  Giao thức lớp 1 (Basic Error Recovery Class - Lớp phục hồi lỗi cơ bản) dùng với các loại mạng B, ở đây các gói tin (TPDU) được đánh số. Ngoài ra giao thức còn có khả năng báo nhận cho nơi gửi và truyền dữ liệu khẩn. So với giao thức lớp 0 giao thức lớp 1 có thêm khả năng phục hồi lỗi.

  Giao thức lớp 2 (Multiplexing Class - lớp dồn kênh) là một cải tiến của lớp 0 cho phép dồn một số liên kết chuyển vận vào một liên kết mạng duy nhất, đồng thời có thể kiểm soát luồng dữ liệu để tránh tắc nghẽn. Giao thức lớp 2 không có khả năng phát hiện và phục hồi lỗi. Do vậy nó cần đặt trên một tầng mạng loại A.

  Giao thức lớp 3 (Error Recovery and Multiplexing Class - lớp phục hồi lỗi cơ bản và dồn kênh) là sự mở rộng giao thức lớp 2 với khả năng phát hiện và phục hồi lỗi, nó cần đặt trên một tầng mạng loại B.

  Giao thức lớp 4 (Error Detection and Recovery Class - Lớp phát hiện và phục hồi lỗi) là lớp có hầu hết các chức năng của các lớp trước và còn bổ sung thêm một số khả năng khác để kiểm soát việc truyền dữ liệu.

Tầng 5: Giao dịch (Session)

Tầng giao dịch (session layer) thiết lập "các giao dịch" giữa các trạm trên mạng, nó đặt tên nhất quán cho mọi thành phần muốn đối thoại với nhau và lập ánh xa giữa các tên với địa chỉ của chúng. Một giao dịch phải được thiết lập trước khi dữ liệu được truyền trên mạng, tầng giao dịch đảm bảo cho các giao dịch được thiết lập và duy trì theo đúng qui định.

Tầng giao dịch còn cung cấp cho người sử dụng các chức năng cần thiết để quản trị các giao dịnh ứng dụng của họ, cụ thể là:

  Điều phối việc trao đổi dữ liệu giữa các ứng dụng bằng cách thiết lập và giải phóng (một cách lôgic) các phiên (hay còn gọi là các hội thoại - dialogues)

  Cung cấp các điểm đồng bộ để kiểm soát việc trao đổi dữ liệu.

  Áp đặt các qui tắc cho các tương tác giữa các ứng dụng của người sử dụng.

  Cung cấp cơ chế "lấy lượt" (nắm quyền) trong quá trình trao đổi dữ liệu.

Trong trường hợp mạng là hai chiều luân phiên thì nẩy sinh vấn đề: hai người sử dụng luân phiên phải "lấy lượt" để truyền dữ liệu. Tầng giao dịch duy trì tương tác luân phiên bằng cách báo cho mỗi người sử dụng khi đến lượt họ được truyền dữ liệu. Vấn đề đồng bộ hóa trong tầng giao dịch cũng được thực hiện như cơ chế kiểm tra/phục hồi, dịch vụ này cho phép người sử dụng xác định các điểm đồng bộ hóa trong dòng dữ liệu đang chuyển vận và khi cần thiết có thể khôi phục việc hội thoại bắt đầu từ một trong các điểm đó

Ở một thời điểm chỉ có một người sử dụng đó quyền đặc biệt được gọi các dịch vụ nhất định của tầng giao dịch, việc phân bổ các quyền này thông qua trao đổi thẻ bài (token). Ví dụ: Ai có được token sẽ có quyền truyền dữ liệu, và khi người giữ token trao token cho người khác thi cũng có nghĩa trao quyền truyền dữ liệu cho người đó.

Tầng giao dịch có các hàm cơ bản sau:



  Give Token cho phép người sử dụng chuyển một token cho một người sử dụng khác của một liên kết giao dịch.

  Please Token cho phép một người sử dụng chưa có token có thể yêu cầu token đó.

  Give Control dùng để chuyển tất cả các token từ một người sử dụng sang một người sử dụng khác.

Tầng 6: Trình bày (Presentation)

Trong giao tiếp giữa các ứng dụng thông qua mạng với cùng một dữ liệu có thể có nhiều cách biểu diễn khác nhau. Thông thường dạng biểu diễn dùng bởi ứng dụng nguồn và dạng biểu diễn dùng bởi ứng dụng đích có thể khác nhau do các ứng dụng được chạy trên các hệ thống hoàn toàn khác nhau (như hệ máy Intel và hệ máy Motorola). Tầng trình bày (Presentation layer) phải chịu trách nhiệm chuyển đổi dữ liệu gửi đi trên mạng từ một loại biểu diễn này sang một loại khác. Để đạt được điều đó nó cung cấp một dạng biểu diễn chung dùng để truyền thông và cho phép chuyển đổi từ dạng biểu diễn cục bộ sang biểu diễn chung và ngược lại.

Tầng trình bày cũng có thể được dùng kĩ thuật mã hóa để xáo trộn các dữ liệu trước khi được truyền đi và giải mã ở đầu đến để bảo mật. Ngoài ra tầng biểu diễn cũng có thể dùng các kĩ thuật nén sao cho chỉ cần một ít byte dữ liệu để thể hiện thông tin khi nó được truyền ở trên mạng, ở đầu nhận, tầng trình bày bung trở lại để được dữ liệu ban đầu.

Tầng 7: Ứng dụng (Application)

Tầng ứng dụng (Application layer) là tầng cao nhất của mô hình OSI, nó xác định giao diện giữa người sử dụng và môi trường OSI và giải quyết các kỹ thuật mà các chương trình ứng dụng dùng để giao tiếp với mạng.

Để cung cấp phương tiện truy nhập môi trường OSI cho các tiến trình ứng dụng, Người ta thiết lập các thực thể ứng dụng (AE), các thực thể ứng dụng sẽ gọi đến các phần tử dịch vụ ứng dụng (Application Service Element - viết tắt là ASE) của chúng. Mỗi thực thể ứng dụng có thể gồm một hoặc nhiều các phần tử dịch vụ ứng dụng. Các phần tử dịch vụ ứng dụng được phối hợp trong môi trường của thực thể ứng dụng thông qua các liên kết (association) gọi là đối tượng liên kết đơn (Single Association Object - viết tắt là SAO). SAO điều khiển việc truyền thông trong suốt vòng đời của liên kết đó cho phép tuần tự hóa các sự kiện đến từ các ASE thành tố của nó.



tải về 0.89 Mb.

Chia sẻ với bạn bè của bạn:
1   2   3   4   5   6   7   8   9   ...   12




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©hocday.com 2024
được sử dụng cho việc quản lý

    Quê hương